Advances in spinel-type electrocatalysts: Leveraging ligand field theory to elucidate structure-property relationships

IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xin Li , Zongkui Kou , Jiayan Dai , Hao Sun , John Wang , Shiyou Zheng
{"title":"Advances in spinel-type electrocatalysts: Leveraging ligand field theory to elucidate structure-property relationships","authors":"Xin Li ,&nbsp;Zongkui Kou ,&nbsp;Jiayan Dai ,&nbsp;Hao Sun ,&nbsp;John Wang ,&nbsp;Shiyou Zheng","doi":"10.1016/j.jmat.2025.101031","DOIUrl":null,"url":null,"abstract":"<div><div>Spinels have been widely concerned as a promising class of electrocatalysts due to their appealing catalytic properties and the tunability of their compositions and structures. Ligand field theory (LFT), which describes the origins and the consequences of metal-ligand interactions, offers crucial insights for the design of spinel-type electrocatalysts. In this review, we timely summarize the research progress of spinel electrocatalysts that leverage LFT for structure-property insights, providing a pioneering perspective in this field. This review explores how LFT plays a pivotal role in optimizing the electrocatalytic properties of spinels. It covers important aspects such as identifying the origin of the catalytic properties, tuning the number of active sites, manipulating the e<sub>g</sub>-filling and the spin state of metal cations, and modulating the 2p band of ligands. We anticipate that this review will provide valuable theoretical guidance and inspire creative spinel designs that excel in electrocatalytic applications.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 5","pages":"Article 101031"},"PeriodicalIF":8.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847825000218","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Spinels have been widely concerned as a promising class of electrocatalysts due to their appealing catalytic properties and the tunability of their compositions and structures. Ligand field theory (LFT), which describes the origins and the consequences of metal-ligand interactions, offers crucial insights for the design of spinel-type electrocatalysts. In this review, we timely summarize the research progress of spinel electrocatalysts that leverage LFT for structure-property insights, providing a pioneering perspective in this field. This review explores how LFT plays a pivotal role in optimizing the electrocatalytic properties of spinels. It covers important aspects such as identifying the origin of the catalytic properties, tuning the number of active sites, manipulating the eg-filling and the spin state of metal cations, and modulating the 2p band of ligands. We anticipate that this review will provide valuable theoretical guidance and inspire creative spinel designs that excel in electrocatalytic applications.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materiomics
Journal of Materiomics Materials Science-Metals and Alloys
CiteScore
14.30
自引率
6.40%
发文量
331
审稿时长
37 days
期刊介绍: The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信