EBHOA-EMobileNetV2: a hybrid system based on efficient feature selection and classification for cardiovascular disease diagnosis.

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Manjula Mandava, Surendra Reddy Vinta
{"title":"EBHOA-EMobileNetV2: a hybrid system based on efficient feature selection and classification for cardiovascular disease diagnosis.","authors":"Manjula Mandava, Surendra Reddy Vinta","doi":"10.1080/10255842.2025.2466081","DOIUrl":null,"url":null,"abstract":"<p><p>The accurate prediction of cardiovascular disease (CVD) or heart disease is an essential and challenging task to treat a patient efficiently before occurring a heart attack. Many deep learning and machine learning frameworks have been developed recently to predict cardiovascular disease in intelligent healthcare. However, a lack of data-recognized and appropriate prediction methodologies meant that most existing strategies failed to improve cardiovascular disease prediction accuracy. This paper presents an intelligent healthcare framework based on a deep learning model to detect cardiovascular heart disease, motivated by present issues. Initially, the proposed system compiles data on heart disease from multiple publicly accessible data sources. To improve the quality of the dataset, effective pre-processing techniques are used including (i) the interquartile range (IQR) method used to identify and eliminate outliers; (ii) the data standardization technique used to handle missing values; (iii) and the 'K-Means SMOTE' oversampling method is used to address the issue of class imbalance. Using the Enhanced Binary Grasshopper Optimization Algorithm (EBHOA), the dataset's appropriate features are chosen. Finally, the presence and absence of CVD are predicted using the Enhanced MobileNetV2 (EMobileNetV2) model. Training and evaluation of the proposed approach were conducted using the UCI Heart Disease and Framingham Heart Study datasets. We obtained excellent results by comparing the results with the most recent methods. The proposed approach beats the current approaches concerning performance evaluation metrics, according to experimental results. For the UCI Heart Disease dataset, the proposed research achieves a higher accuracy of 98.78%, precision of 99%, recall of 99% and F1 score of 99%. For the Framingham dataset, the proposed research achieves a higher accuracy of 99.39%, precision of 99.50%, recall of 99.50%, and F1 score of 99%. The proposed deep learning-based classification model combined with an effective feature selection technique yielded the best results. This innovative method has the potential to enhance the accuracy and consistency of heart disease prediction, which would be advantageous for clinical practice and patient care.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-23"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2466081","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate prediction of cardiovascular disease (CVD) or heart disease is an essential and challenging task to treat a patient efficiently before occurring a heart attack. Many deep learning and machine learning frameworks have been developed recently to predict cardiovascular disease in intelligent healthcare. However, a lack of data-recognized and appropriate prediction methodologies meant that most existing strategies failed to improve cardiovascular disease prediction accuracy. This paper presents an intelligent healthcare framework based on a deep learning model to detect cardiovascular heart disease, motivated by present issues. Initially, the proposed system compiles data on heart disease from multiple publicly accessible data sources. To improve the quality of the dataset, effective pre-processing techniques are used including (i) the interquartile range (IQR) method used to identify and eliminate outliers; (ii) the data standardization technique used to handle missing values; (iii) and the 'K-Means SMOTE' oversampling method is used to address the issue of class imbalance. Using the Enhanced Binary Grasshopper Optimization Algorithm (EBHOA), the dataset's appropriate features are chosen. Finally, the presence and absence of CVD are predicted using the Enhanced MobileNetV2 (EMobileNetV2) model. Training and evaluation of the proposed approach were conducted using the UCI Heart Disease and Framingham Heart Study datasets. We obtained excellent results by comparing the results with the most recent methods. The proposed approach beats the current approaches concerning performance evaluation metrics, according to experimental results. For the UCI Heart Disease dataset, the proposed research achieves a higher accuracy of 98.78%, precision of 99%, recall of 99% and F1 score of 99%. For the Framingham dataset, the proposed research achieves a higher accuracy of 99.39%, precision of 99.50%, recall of 99.50%, and F1 score of 99%. The proposed deep learning-based classification model combined with an effective feature selection technique yielded the best results. This innovative method has the potential to enhance the accuracy and consistency of heart disease prediction, which would be advantageous for clinical practice and patient care.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信