{"title":"Research on meshing method for industrial CT volume data based on iterative smooth signed distance surface reconstruction.","authors":"ShiBo Jiang, Shuo Xu, YueWen Sun, ZhiFang Wu","doi":"10.1177/08953996241306691","DOIUrl":null,"url":null,"abstract":"<p><p>Industrial Computed Tomography (CT) technology is increasingly applied in fields such as additive manufacturing and non-destructive testing, providing rich three-dimensional information for various fields, which is crucial for internal structure detection, defect detection, and product development. In subsequent processes such as analysis, simulation, and editing, three-dimensional volume data models often need to be converted into mesh models, making effective meshing of volume data essential for expanding the application scenarios and scope of industrial CT. However, the existing Marching Cubes algorithm has issues with low efficiency and poor mesh quality during the volume data meshing process. To overcome these limitations, this study proposes an innovative method for industrial CT volume data meshing based on the Iterative Smooth Signed Surface Distance (iSSD) algorithm. This method first refines the segmented voxel model, accurately extracts boundary voxels, and constructs a high-quality point cloud model. By randomly initializing the normals of the point cloud and iteratively updating the point cloud normals, the mesh is reconstructed using the SSD algorithm after each iteration update, ultimately achieving high-quality, watertight, and smooth mesh model reconstruction, ensuring the accuracy and reliability of the reconstructed mesh. Qualitative and quantitative analyses with other methods have further highlighted the excellent performance of the method proposed in this paper. This study not only improves the efficiency and quality of volume data meshing but also provides a solid foundation for subsequent three-dimensional analysis, simulation, and editing, and has important industrial application prospects and academic value.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"340-349"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241306691","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Industrial Computed Tomography (CT) technology is increasingly applied in fields such as additive manufacturing and non-destructive testing, providing rich three-dimensional information for various fields, which is crucial for internal structure detection, defect detection, and product development. In subsequent processes such as analysis, simulation, and editing, three-dimensional volume data models often need to be converted into mesh models, making effective meshing of volume data essential for expanding the application scenarios and scope of industrial CT. However, the existing Marching Cubes algorithm has issues with low efficiency and poor mesh quality during the volume data meshing process. To overcome these limitations, this study proposes an innovative method for industrial CT volume data meshing based on the Iterative Smooth Signed Surface Distance (iSSD) algorithm. This method first refines the segmented voxel model, accurately extracts boundary voxels, and constructs a high-quality point cloud model. By randomly initializing the normals of the point cloud and iteratively updating the point cloud normals, the mesh is reconstructed using the SSD algorithm after each iteration update, ultimately achieving high-quality, watertight, and smooth mesh model reconstruction, ensuring the accuracy and reliability of the reconstructed mesh. Qualitative and quantitative analyses with other methods have further highlighted the excellent performance of the method proposed in this paper. This study not only improves the efficiency and quality of volume data meshing but also provides a solid foundation for subsequent three-dimensional analysis, simulation, and editing, and has important industrial application prospects and academic value.
期刊介绍:
Research areas within the scope of the journal include:
Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants
X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional
Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics
Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes