Proximal femur segmentation and quantification in dual-energy subtraction tomosynthesis: A novel approach to fracture risk assessment.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Journal of X-Ray Science and Technology Pub Date : 2025-03-01 Epub Date: 2025-01-29 DOI:10.1177/08953996241312594
Akari Matsushima, Tai-Been Chen, Koharu Kimura, Mizuki Sato, Shih-Yen Hsu, Takahide Okamoto
{"title":"Proximal femur segmentation and quantification in dual-energy subtraction tomosynthesis: A novel approach to fracture risk assessment.","authors":"Akari Matsushima, Tai-Been Chen, Koharu Kimura, Mizuki Sato, Shih-Yen Hsu, Takahide Okamoto","doi":"10.1177/08953996241312594","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundOsteoporosis is a major public health concern, especially among older adults, due to its association with an increased risk of fractures, particularly in the proximal femur. These fractures severely impact mobility and quality of life, leading to significant economic and health burdens.ObjectiveThis study aims to enhance bone density assessment in the proximal femur by addressing the limitations of conventional dual-energy X-ray absorptiometry through the integration of tomosynthesis with dual-energy applications and advanced segmentation models.Methods and MaterialsThe imaging capability of a radiography/fluoroscopy system with dual-energy subtraction was evaluated. Two phantoms were included in this study: a tomosynthesis phantom (PH-56) was used to measure the quality of the tomosynthesis images, and a torso phantom (PH-4) was used to obtain proximal femur images. Quantification of bone images was achieved by optimizing the energy subtraction (ene-sub) and scale factors to isolate bone pixel values while nullifying soft tissue pixel values. Both the faster region-based convolutional neural network (Faster R-CNN) and U-Net were used to segment the proximal femoral region. The performance of these models was then evaluated using the intersection-over-union (IoU) metric with a torso phantom to ensure controlled conditions.ResultsThe optimal ene-sub-factor ranged between 1.19 and 1.20, and a scale factor of around 0.1 was found to be suitable for detailed bone image observation. Regarding segmentation performance, a VGG19-based Faster R-CNN model achieved the highest mean IoU, outperforming the U-Net model (0.865 vs. 0.515, respectively).ConclusionsThese findings suggest that the integration of tomosynthesis with dual-energy applications significantly enhances the accuracy of bone density measurements in the proximal femur, and that the Faster R-CNN model provides superior segmentation performance, thereby offering a promising tool for bone density and osteoporosis management. Future research should focus on refining these models and validating their clinical applicability to improve patient outcomes.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"405-419"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241312594","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

BackgroundOsteoporosis is a major public health concern, especially among older adults, due to its association with an increased risk of fractures, particularly in the proximal femur. These fractures severely impact mobility and quality of life, leading to significant economic and health burdens.ObjectiveThis study aims to enhance bone density assessment in the proximal femur by addressing the limitations of conventional dual-energy X-ray absorptiometry through the integration of tomosynthesis with dual-energy applications and advanced segmentation models.Methods and MaterialsThe imaging capability of a radiography/fluoroscopy system with dual-energy subtraction was evaluated. Two phantoms were included in this study: a tomosynthesis phantom (PH-56) was used to measure the quality of the tomosynthesis images, and a torso phantom (PH-4) was used to obtain proximal femur images. Quantification of bone images was achieved by optimizing the energy subtraction (ene-sub) and scale factors to isolate bone pixel values while nullifying soft tissue pixel values. Both the faster region-based convolutional neural network (Faster R-CNN) and U-Net were used to segment the proximal femoral region. The performance of these models was then evaluated using the intersection-over-union (IoU) metric with a torso phantom to ensure controlled conditions.ResultsThe optimal ene-sub-factor ranged between 1.19 and 1.20, and a scale factor of around 0.1 was found to be suitable for detailed bone image observation. Regarding segmentation performance, a VGG19-based Faster R-CNN model achieved the highest mean IoU, outperforming the U-Net model (0.865 vs. 0.515, respectively).ConclusionsThese findings suggest that the integration of tomosynthesis with dual-energy applications significantly enhances the accuracy of bone density measurements in the proximal femur, and that the Faster R-CNN model provides superior segmentation performance, thereby offering a promising tool for bone density and osteoporosis management. Future research should focus on refining these models and validating their clinical applicability to improve patient outcomes.

双能量减法断层合成中股骨近端分割和量化:骨折风险评估的新方法。
背景:骨质疏松症是一个主要的公共卫生问题,特别是在老年人中,因为它与骨折风险增加有关,特别是在股骨近端。这些骨折严重影响行动能力和生活质量,导致严重的经济和健康负担。目的:本研究旨在通过将断层合成与双能应用和先进的分割模型相结合,解决传统双能x线吸收仪的局限性,增强股骨近端骨密度评估。方法和材料:评价双能减影的x线/透视系统的成像能力。本研究中包括两个模型:一个层合模型(PH-56)用于测量层合图像的质量,一个躯干模型(PH-4)用于获得股骨近端图像。通过优化能量减法(ene-sub)和比例因子来分离骨像素值,同时消除软组织像素值,实现骨图像的量化。采用更快的基于区域的卷积神经网络(faster R-CNN)和U-Net对股骨近端区域进行分割。然后使用具有躯干幻影的交叉-超联合(IoU)度量来评估这些模型的性能,以确保受控条件。结果:最佳的ene- subfactor在1.19 ~ 1.20之间,0.1左右的比例因子适合于详细的骨图像观察。在分割性能方面,基于vgg19的Faster R-CNN模型获得了最高的平均IoU,优于U-Net模型(分别为0.865和0.515)。结论:这些研究结果表明,断层合成与双能量应用的结合显著提高了股骨近端骨密度测量的准确性,Faster R-CNN模型具有优越的分割性能,因此为骨密度和骨质疏松症管理提供了一个有前途的工具。未来的研究应侧重于完善这些模型,并验证其临床适用性,以改善患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信