MAFA-Uformer: Multi-attention and dual-branch feature aggregation U-shaped transformer for sparse-view CT reconstruction.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Journal of X-Ray Science and Technology Pub Date : 2025-01-01 Epub Date: 2025-01-08 DOI:10.1177/08953996241300016
Xuan Zhang, Chenyun Fang, Zhiwei Qiao
{"title":"MAFA-Uformer: Multi-attention and dual-branch feature aggregation U-shaped transformer for sparse-view CT reconstruction.","authors":"Xuan Zhang, Chenyun Fang, Zhiwei Qiao","doi":"10.1177/08953996241300016","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Although computed tomography (CT) is widely employed in disease detection, X-ray radiation may pose a risk to the health of patients. Reducing the projection views is a common method, however, the reconstructed images often suffer from streak artifacts.</p><p><strong>Purpose: </strong>In previous related works, it can be found that the convolutional neural network (CNN) is proficient in extracting local features, while the Transformer is adept at capturing global information. To suppress streak artifacts for sparse-view CT, this study aims to develop a method that combines the advantages of CNN and Transformer.</p><p><strong>Methods: </strong>In this paper, we propose a Multi-Attention and Dual-Branch Feature Aggregation U-shaped Transformer network (MAFA-Uformer), which consists of two branches: CNN and Transformer. Firstly, with a coordinate attention mechanism, the Transformer branch can capture the overall structure and orientation information to provide a global context understanding of the image under reconstruction. Secondly, the CNN branch focuses on extracting crucial local features of images through channel spatial attention, thus enhancing detail recognition capabilities. Finally, through a feature fusion module, the global information from the Transformer and the local features from the CNN are integrated effectively.</p><p><strong>Results: </strong>Experimental results demonstrate that our method achieves outstanding performance in terms of peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and root mean square error (RMSE). Compared with Restormer, our model achieves significant improvements: PSNR increases by 0.76 dB, SSIM improves by 0.44%, and RMSE decreases by 8.55%.</p><p><strong>Conclusion: </strong>Our method not only effectively suppresses artifacts but also better preserves details and features, thereby providing robust support for accurate diagnosis of CT images.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"157-166"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241300016","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Although computed tomography (CT) is widely employed in disease detection, X-ray radiation may pose a risk to the health of patients. Reducing the projection views is a common method, however, the reconstructed images often suffer from streak artifacts.

Purpose: In previous related works, it can be found that the convolutional neural network (CNN) is proficient in extracting local features, while the Transformer is adept at capturing global information. To suppress streak artifacts for sparse-view CT, this study aims to develop a method that combines the advantages of CNN and Transformer.

Methods: In this paper, we propose a Multi-Attention and Dual-Branch Feature Aggregation U-shaped Transformer network (MAFA-Uformer), which consists of two branches: CNN and Transformer. Firstly, with a coordinate attention mechanism, the Transformer branch can capture the overall structure and orientation information to provide a global context understanding of the image under reconstruction. Secondly, the CNN branch focuses on extracting crucial local features of images through channel spatial attention, thus enhancing detail recognition capabilities. Finally, through a feature fusion module, the global information from the Transformer and the local features from the CNN are integrated effectively.

Results: Experimental results demonstrate that our method achieves outstanding performance in terms of peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and root mean square error (RMSE). Compared with Restormer, our model achieves significant improvements: PSNR increases by 0.76 dB, SSIM improves by 0.44%, and RMSE decreases by 8.55%.

Conclusion: Our method not only effectively suppresses artifacts but also better preserves details and features, thereby providing robust support for accurate diagnosis of CT images.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信