Enhanced swin transformer based tuberculosis classification with segmentation using chest X-ray.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Journal of X-Ray Science and Technology Pub Date : 2025-01-01 Epub Date: 2025-01-08 DOI:10.1177/08953996241300018
P Visu, V Sathiya, P Ajitha, R Surendran
{"title":"Enhanced swin transformer based tuberculosis classification with segmentation using chest X-ray.","authors":"P Visu, V Sathiya, P Ajitha, R Surendran","doi":"10.1177/08953996241300018","DOIUrl":null,"url":null,"abstract":"<p><strong>Background:: </strong>Tuberculosis disease is the disease that causes significant morbidity and mortality worldwide. Thus, early detection of the disease is crucial for proper treatment and controlling the spread of Tuberculosis disease. Chest X-ray imaging is one of the most widely used diagnostic tools for detecting the Tuberculosis, which is time-consuming, and prone to errors. Nowadays, deep learning model provides the automated classification of medical images with promising outcome.</p><p><strong>Objective:: </strong>Thus, this research introduced a deep learning based segmentation and classification model. Initially, the Adaptive Gaussian Filtering based pre-processing and data augmentation is performed to remove artefacts and biased outcome. Then, Attention UNet (A_UNet) based segmentation is proposed for segmenting the required region of Chest X-ray.</p><p><strong>Methods:: </strong>Using the segmented outcome, Enhanced Swin Transformer (EnSTrans) model based Tuberculosis classification model is designed with Residual Pyramid Network based Multi-layer perceptron (MLP) layer for enhancing the classification accuracy.</p><p><strong>Results:: </strong>Enhanced Lotus Effect Optimization (EnLeO) Algorithm is employed for the loss function optimization of the EnSTrans model.</p><p><strong>Conclusions:: </strong>The proposed methods acquired the Accuracy, Recall, Precision, F-score, and Specificity of 99.0576%, 98.9459%, 99.145%, 98.96%, and 99.152% respectively.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"167-186"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241300018","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Background:: Tuberculosis disease is the disease that causes significant morbidity and mortality worldwide. Thus, early detection of the disease is crucial for proper treatment and controlling the spread of Tuberculosis disease. Chest X-ray imaging is one of the most widely used diagnostic tools for detecting the Tuberculosis, which is time-consuming, and prone to errors. Nowadays, deep learning model provides the automated classification of medical images with promising outcome.

Objective:: Thus, this research introduced a deep learning based segmentation and classification model. Initially, the Adaptive Gaussian Filtering based pre-processing and data augmentation is performed to remove artefacts and biased outcome. Then, Attention UNet (A_UNet) based segmentation is proposed for segmenting the required region of Chest X-ray.

Methods:: Using the segmented outcome, Enhanced Swin Transformer (EnSTrans) model based Tuberculosis classification model is designed with Residual Pyramid Network based Multi-layer perceptron (MLP) layer for enhancing the classification accuracy.

Results:: Enhanced Lotus Effect Optimization (EnLeO) Algorithm is employed for the loss function optimization of the EnSTrans model.

Conclusions:: The proposed methods acquired the Accuracy, Recall, Precision, F-score, and Specificity of 99.0576%, 98.9459%, 99.145%, 98.96%, and 99.152% respectively.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信