Advancing lung cancer diagnosis: Combining 3D auto-encoders and attention mechanisms for CT scan analysis.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Journal of X-Ray Science and Technology Pub Date : 2025-03-01 Epub Date: 2025-01-28 DOI:10.1177/08953996241313120
Meng Wang, Zi Yang, Ruifeng Zhao
{"title":"Advancing lung cancer diagnosis: Combining 3D auto-encoders and attention mechanisms for CT scan analysis.","authors":"Meng Wang, Zi Yang, Ruifeng Zhao","doi":"10.1177/08953996241313120","DOIUrl":null,"url":null,"abstract":"<p><p>ObjectiveThe goal of this study is to assess the effectiveness of a hybrid deep learning model that combines 3D Auto-encoders with attention mechanisms to detect lung cancer early from CT scan images. The study aims to improve diagnostic accuracy, sensitivity, and specificity by focusing on key features in the scans.Materials and methodsA hybrid model was developed that combines feature extraction using 3D Auto-encoder networks with attention mechanisms. First, the 3D Auto-encoder model was tested without attention, using feature selection techniques such as RFE, LASSO, and ANOVA. This was followed by evaluation using several classifiers: SVM, RF, GBM, MLP, LightGBM, XGBoost, Stacking, and Voting. The model's performance was evaluated based on accuracy, sensitivity, F1-Score, and AUC-ROC. After that, attention mechanisms were added to help the model focus on important areas in the CT scans, and the performance was re-assessed.ResultsThe 3D Auto-encoder model without attention achieved an accuracy of 93% and sensitivity of 89%. When attention mechanisms were added, the performance improved across all metrics. For example, the accuracy of SVM increased to 94%, sensitivity to 91%, and AUC-ROC to 0.96. Random Forest (RF) also showed improvements, with accuracy rising to 94% and AUC-ROC to 0.93. The final model with attention improved the overall accuracy to 93.4%, sensitivity to 90.2%, and AUC-ROC to 94.1%. These results highlight the important role of attention in identifying the most relevant features for accurate classification.ConclusionsThe proposed hybrid deep learning model, especially with the addition of attention mechanisms, significantly improves the early detection of lung cancer. By focusing on key features in the CT scans, the attention mechanism helps reduce false negatives and boosts overall diagnostic accuracy. This approach has great potential for use in clinical applications, particularly in the early-stage detection of lung cancer.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"376-392"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241313120","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

ObjectiveThe goal of this study is to assess the effectiveness of a hybrid deep learning model that combines 3D Auto-encoders with attention mechanisms to detect lung cancer early from CT scan images. The study aims to improve diagnostic accuracy, sensitivity, and specificity by focusing on key features in the scans.Materials and methodsA hybrid model was developed that combines feature extraction using 3D Auto-encoder networks with attention mechanisms. First, the 3D Auto-encoder model was tested without attention, using feature selection techniques such as RFE, LASSO, and ANOVA. This was followed by evaluation using several classifiers: SVM, RF, GBM, MLP, LightGBM, XGBoost, Stacking, and Voting. The model's performance was evaluated based on accuracy, sensitivity, F1-Score, and AUC-ROC. After that, attention mechanisms were added to help the model focus on important areas in the CT scans, and the performance was re-assessed.ResultsThe 3D Auto-encoder model without attention achieved an accuracy of 93% and sensitivity of 89%. When attention mechanisms were added, the performance improved across all metrics. For example, the accuracy of SVM increased to 94%, sensitivity to 91%, and AUC-ROC to 0.96. Random Forest (RF) also showed improvements, with accuracy rising to 94% and AUC-ROC to 0.93. The final model with attention improved the overall accuracy to 93.4%, sensitivity to 90.2%, and AUC-ROC to 94.1%. These results highlight the important role of attention in identifying the most relevant features for accurate classification.ConclusionsThe proposed hybrid deep learning model, especially with the addition of attention mechanisms, significantly improves the early detection of lung cancer. By focusing on key features in the CT scans, the attention mechanism helps reduce false negatives and boosts overall diagnostic accuracy. This approach has great potential for use in clinical applications, particularly in the early-stage detection of lung cancer.

推进肺癌诊断:结合三维自动编码器和注意力机制进行 CT 扫描分析。
目的:本研究的目的是评估将3D自动编码器与注意机制相结合的混合深度学习模型在CT扫描图像中早期检测肺癌的有效性。该研究旨在通过关注扫描中的关键特征来提高诊断的准确性、敏感性和特异性。材料和方法:开发了一种混合模型,将使用3D自编码器网络的特征提取与注意机制相结合。首先,使用RFE、LASSO和ANOVA等特征选择技术对3D Auto-encoder模型进行无注意测试。接下来是使用几个分类器进行评估:SVM、RF、GBM、MLP、LightGBM、XGBoost、Stacking和Voting。根据准确性、敏感性、F1-Score和AUC-ROC对模型的性能进行评估。之后,加入注意机制,帮助模型专注于CT扫描中的重要区域,并重新评估其性能。结果:无注意的3D Auto-encoder模型准确率为93%,灵敏度为89%。当添加注意力机制时,所有指标的表现都有所改善。例如,SVM的准确率提高到94%,灵敏度提高到91%,AUC-ROC提高到0.96。随机森林(RF)也有改善,准确率上升到94%,AUC-ROC上升到0.93。注意后的最终模型将总体准确率提高到93.4%,灵敏度提高到90.2%,AUC-ROC提高到94.1%。这些结果突出了注意力在识别最相关的特征以进行准确分类方面的重要作用。结论:所提出的混合深度学习模型,特别是加入注意机制后,显著提高了肺癌的早期发现。通过专注于CT扫描的关键特征,注意力机制有助于减少假阴性,提高整体诊断的准确性。这种方法在临床应用中具有很大的潜力,特别是在肺癌的早期检测中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信