Mask R-CNN assisted diagnosis of spinal tuberculosis.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Journal of X-Ray Science and Technology Pub Date : 2025-01-01 Epub Date: 2024-12-24 DOI:10.1177/08953996241290326
Wenjun Li, Yanfan Li, Huan Peng, Wenjun Liang
{"title":"Mask R-CNN assisted diagnosis of spinal tuberculosis.","authors":"Wenjun Li, Yanfan Li, Huan Peng, Wenjun Liang","doi":"10.1177/08953996241290326","DOIUrl":null,"url":null,"abstract":"<p><p>The prevalence of spinal tuberculosis (ST) is particularly high in underdeveloped regions with inadequate medical conditions. This not only leads to misdiagnosis and delays in treatment progress but also contributes to the continued transmission of tuberculosis bacteria, posing a risk to other individuals. Currently, CT imaging is extensively utilized in computer-aided diagnosis (CAD). The main features of ST on CT images include bone destruction, osteosclerosis, sequestration formation, and intervertebral disc damage. However, manual diagnosis by doctors may result in subjective judgments and misdiagnosis. Therefore, an accurate and objective method is needed for diagnosing of spinal tuberculosis. In this paper, we put forward an assistive diagnostic approach for spinal tuberculosis that is based on deep learning. The approach uses the Mask R-CNN model. Moreover, we modify the original model network by incorporating the ResPath and cbam* to improve the performance metrics, namely <math><mi>m</mi><mi>A</mi><msub><mi>P</mi><mrow><mrow><mi>small</mi></mrow></mrow></msub></math> and <i>F1-score</i>. Meanwhile, other deep learning models such as Faster-RCNN and SSD were also compared. Experimental results demonstrate that the enhanced model can effectively identify spinal tuberculosis lesions, with an <math><mi>m</mi><mi>A</mi><msub><mi>P</mi><mrow><mrow><mi>small</mi></mrow></mrow></msub></math> of 0.9175, surpassing the original model's 0.8340, and an <i>F1-score</i> of 0.9335, outperforming the original model's 0.8657.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"120-133"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241290326","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The prevalence of spinal tuberculosis (ST) is particularly high in underdeveloped regions with inadequate medical conditions. This not only leads to misdiagnosis and delays in treatment progress but also contributes to the continued transmission of tuberculosis bacteria, posing a risk to other individuals. Currently, CT imaging is extensively utilized in computer-aided diagnosis (CAD). The main features of ST on CT images include bone destruction, osteosclerosis, sequestration formation, and intervertebral disc damage. However, manual diagnosis by doctors may result in subjective judgments and misdiagnosis. Therefore, an accurate and objective method is needed for diagnosing of spinal tuberculosis. In this paper, we put forward an assistive diagnostic approach for spinal tuberculosis that is based on deep learning. The approach uses the Mask R-CNN model. Moreover, we modify the original model network by incorporating the ResPath and cbam* to improve the performance metrics, namely mAPsmall and F1-score. Meanwhile, other deep learning models such as Faster-RCNN and SSD were also compared. Experimental results demonstrate that the enhanced model can effectively identify spinal tuberculosis lesions, with an mAPsmall of 0.9175, surpassing the original model's 0.8340, and an F1-score of 0.9335, outperforming the original model's 0.8657.

脊柱结核的假面 R-CNN 辅助诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信