Enhancing brain tumor classification by integrating radiomics and deep learning features: A comprehensive study utilizing ensemble methods on MRI scans.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Journal of X-Ray Science and Technology Pub Date : 2025-01-01 Epub Date: 2024-12-09 DOI:10.1177/08953996241299996
Liang Yin, Jing Wang
{"title":"Enhancing brain tumor classification by integrating radiomics and deep learning features: A comprehensive study utilizing ensemble methods on MRI scans.","authors":"Liang Yin, Jing Wang","doi":"10.1177/08953996241299996","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>This study aims to assess the effectiveness of combining radiomics features (RFs) with deep learning features (DFs) for classifying brain tumors-specifically Glioma, Meningioma, and Pituitary Tumor-using MRI scans and advanced ensemble learning techniques.</p><p><strong>Methods: </strong>A total of 3064 T1-weighted contrast-enhanced brain MRI scans were analyzed. RFs were extracted using Pyradiomics, while DFs were obtained from a 3D convolutional neural network (CNN). These features were used both individually and together to train a range of machine learning models, including Support Vector Machines (SVM), Decision Trees (DT), Random Forests (RF), AdaBoost, Bagging, k-Nearest Neighbors (KNN), and Multi-Layer Perceptrons (MLP). To enhance the accuracy of these models, ensemble approaches such as Stacking, Voting, and Boosting were employed. LASSO feature selection and five-fold cross-validation were utilized to ensure the models' robustness.</p><p><strong>Results: </strong>The results demonstrated that combining RFs and DFs significantly improved the model's performance compared to using either feature set alone. The best performance was achieved using the combined RF + DF approach with ensemble methods, particularly Boosting, which resulted in an accuracy of 95.0%, an AUC of 0.92, a sensitivity of 88%, and a specificity of 90%. Conversely, models utilizing only RFs or DFs showed lower performance, with RFs reaching an AUC of 0.82 and DFs achieving an AUC of 0.85.</p><p><strong>Conclusion: </strong>The integration of RFs and DFs, along with advanced ensemble methods, significantly improves the accuracy and reliability of brain tumor classification using MRI. This approach shows strong clinical potential, with opportunities for further enhancing generalizability and precision through additional MRI sequences and advanced machine learning techniques.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"47-57"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241299996","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective: This study aims to assess the effectiveness of combining radiomics features (RFs) with deep learning features (DFs) for classifying brain tumors-specifically Glioma, Meningioma, and Pituitary Tumor-using MRI scans and advanced ensemble learning techniques.

Methods: A total of 3064 T1-weighted contrast-enhanced brain MRI scans were analyzed. RFs were extracted using Pyradiomics, while DFs were obtained from a 3D convolutional neural network (CNN). These features were used both individually and together to train a range of machine learning models, including Support Vector Machines (SVM), Decision Trees (DT), Random Forests (RF), AdaBoost, Bagging, k-Nearest Neighbors (KNN), and Multi-Layer Perceptrons (MLP). To enhance the accuracy of these models, ensemble approaches such as Stacking, Voting, and Boosting were employed. LASSO feature selection and five-fold cross-validation were utilized to ensure the models' robustness.

Results: The results demonstrated that combining RFs and DFs significantly improved the model's performance compared to using either feature set alone. The best performance was achieved using the combined RF + DF approach with ensemble methods, particularly Boosting, which resulted in an accuracy of 95.0%, an AUC of 0.92, a sensitivity of 88%, and a specificity of 90%. Conversely, models utilizing only RFs or DFs showed lower performance, with RFs reaching an AUC of 0.82 and DFs achieving an AUC of 0.85.

Conclusion: The integration of RFs and DFs, along with advanced ensemble methods, significantly improves the accuracy and reliability of brain tumor classification using MRI. This approach shows strong clinical potential, with opportunities for further enhancing generalizability and precision through additional MRI sequences and advanced machine learning techniques.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信