A deep learning detection method for pancreatic cystic neoplasm based on Mamba architecture.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Journal of X-Ray Science and Technology Pub Date : 2025-03-01 Epub Date: 2025-02-18 DOI:10.1177/08953996251313719
Junlong Dai, Cong He, Liang Jin, Chengwei Chen, Jie Wu, Yun Bian
{"title":"A deep learning detection method for pancreatic cystic neoplasm based on Mamba architecture.","authors":"Junlong Dai, Cong He, Liang Jin, Chengwei Chen, Jie Wu, Yun Bian","doi":"10.1177/08953996251313719","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Early diagnosis of pancreatic cystic neoplasm (PCN) is crucial for patient survival. This study proposes M-YOLO, a novel model combining Mamba architecture and YOLO, to enhance the detection of pancreatic cystic tumors. The model addresses the technical challenge posed by the tumors' complex morphological features in medical images.</p><p><strong>Methods: </strong>This study develops an innovative deep learning network architecture, M-YOLO (Mamba YOLOv10), which combines the advantages of Mamba and YOLOv10 and aims to improve the accuracy and efficiency of pancreatic cystic neoplasm(PCN) detection. The Mamba architecture, with its superior sequence modeling capabilities, is ideally suited for processing the rich contextual information contained in medical images. At the same time, YOLOv10's fast object detection feature ensures the system's viability for application in clinical practice.</p><p><strong>Results: </strong>M-YOLO has a high sensitivity of 0.98, a specificity of 0.92, a precision of 0.96, an F1 value of 0.97, an accuracy of 0.93, as well as a mean average precision (mAP) of 0.96 at 50% intersection-to-union (IoU) threshold on the dataset provided by Changhai Hospital.</p><p><strong>Conclusions: </strong>M-YOLO(Mamba YOLOv10) enhances the identification performance of PCN by integrating the deep feature extraction capability of Mamba and the fast localization technique of YOLOv10.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"461-471"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996251313719","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Early diagnosis of pancreatic cystic neoplasm (PCN) is crucial for patient survival. This study proposes M-YOLO, a novel model combining Mamba architecture and YOLO, to enhance the detection of pancreatic cystic tumors. The model addresses the technical challenge posed by the tumors' complex morphological features in medical images.

Methods: This study develops an innovative deep learning network architecture, M-YOLO (Mamba YOLOv10), which combines the advantages of Mamba and YOLOv10 and aims to improve the accuracy and efficiency of pancreatic cystic neoplasm(PCN) detection. The Mamba architecture, with its superior sequence modeling capabilities, is ideally suited for processing the rich contextual information contained in medical images. At the same time, YOLOv10's fast object detection feature ensures the system's viability for application in clinical practice.

Results: M-YOLO has a high sensitivity of 0.98, a specificity of 0.92, a precision of 0.96, an F1 value of 0.97, an accuracy of 0.93, as well as a mean average precision (mAP) of 0.96 at 50% intersection-to-union (IoU) threshold on the dataset provided by Changhai Hospital.

Conclusions: M-YOLO(Mamba YOLOv10) enhances the identification performance of PCN by integrating the deep feature extraction capability of Mamba and the fast localization technique of YOLOv10.

基于曼巴结构的胰腺囊性肿瘤深度学习检测方法。
目的:胰腺囊性肿瘤(PCN)的早期诊断对患者的生存至关重要。本研究提出一种结合Mamba结构和YOLO的新型模型M-YOLO,以增强胰腺囊性肿瘤的检测能力。该模型解决了医学图像中肿瘤复杂形态特征带来的技术挑战。方法:本研究结合Mamba和YOLOv10的优点,开发了一种创新的深度学习网络架构M-YOLO (Mamba YOLOv10),旨在提高胰腺囊性肿瘤(PCN)检测的准确性和效率。Mamba架构具有优越的序列建模功能,非常适合处理医学图像中包含的丰富上下文信息。同时,YOLOv10的快速目标检测功能确保了该系统在临床实践中的应用可行性。结果:M-YOLO在长海医院提供的数据集上,灵敏度为0.98,特异性为0.92,精度为0.96,F1值为0.97,精度为0.93,在50% IoU阈值下的平均精度(mAP)为0.96。结论:M-YOLO(Mamba YOLOv10)融合了Mamba的深度特征提取能力和YOLOv10的快速定位技术,提高了PCN的识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信