CT image super-resolution under the guidance of deep gradient information.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Journal of X-Ray Science and Technology Pub Date : 2025-01-01 Epub Date: 2024-12-15 DOI:10.1177/08953996241289225
Ye Shen, Ningning Liang, Xinyi Zhong, Junru Ren, Zhizhong Zheng, Lei Li, Bin Yan
{"title":"CT image super-resolution under the guidance of deep gradient information.","authors":"Ye Shen, Ningning Liang, Xinyi Zhong, Junru Ren, Zhizhong Zheng, Lei Li, Bin Yan","doi":"10.1177/08953996241289225","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the hardware constraints of Computed Tomography (CT) imaging, acquiring high-resolution (HR) CT images in clinical settings poses a significant challenge. In recent years, convolutional neural networks have shown great potential in CT super-resolution (SR) problems. However, the reconstruction results of many deep learning-based SR methods have structural distortion and detail ambiguity. In this paper, a new SR network based on generative adversarial learning is proposed. The network consists of gradient branch and SR branch. Gradient branch is used to recover HR gradient maps. The network merges gradient image features of the gradient branch into the SR branch, offering gradient information guidance for super-resolution (SR) reconstruction. Further, the loss function of the network combines the image space loss function with the gradient loss and the gradient variance loss to further generate a more realistic detail texture. Compared to other comparison algorithms, the structural similarity index of the SR results obtained by the proposed method on simulation and experimental data has increased by 1.8% and 1.4%, respectively. The experimental results demonstrate that the proposed CT SR network exhibits superior performance in terms of structure preservation and detail restoration.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"58-71"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241289225","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the hardware constraints of Computed Tomography (CT) imaging, acquiring high-resolution (HR) CT images in clinical settings poses a significant challenge. In recent years, convolutional neural networks have shown great potential in CT super-resolution (SR) problems. However, the reconstruction results of many deep learning-based SR methods have structural distortion and detail ambiguity. In this paper, a new SR network based on generative adversarial learning is proposed. The network consists of gradient branch and SR branch. Gradient branch is used to recover HR gradient maps. The network merges gradient image features of the gradient branch into the SR branch, offering gradient information guidance for super-resolution (SR) reconstruction. Further, the loss function of the network combines the image space loss function with the gradient loss and the gradient variance loss to further generate a more realistic detail texture. Compared to other comparison algorithms, the structural similarity index of the SR results obtained by the proposed method on simulation and experimental data has increased by 1.8% and 1.4%, respectively. The experimental results demonstrate that the proposed CT SR network exhibits superior performance in terms of structure preservation and detail restoration.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信