Dhamodharan Srinivasan, Ajmeera Kiran, S Parameswari, Jeevanantham Vellaichamy
{"title":"Bonevoyage: Navigating the depths of osteoporosis detection with a dual-core ensemble of cascaded ShuffleNet and neural networks.","authors":"Dhamodharan Srinivasan, Ajmeera Kiran, S Parameswari, Jeevanantham Vellaichamy","doi":"10.1177/08953996241289314","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Osteoporosis (OP) is a condition that significantly decreases bone density and strength, often remaining undetected until the occurrence of a fracture. Timely identification of OP is essential for preventing fractures, reducing morbidity, and enhancing the quality of life.</p><p><strong>Objective: </strong>This study aims to improve the accuracy, speed, and reliability of early-stage osteoporosis detection by integrating the compact architecture of Cascaded ShuffleNet with the pattern recognition prowess of Artificial Neural Networks (ANNs).</p><p><strong>Methods: </strong>BoneVoyage leverages the efficiency of ShuffleNet and the analytical capabilities of ANNs to extract and analyze complex features from bone density scans. The framework was trained and validated on a comprehensive dataset containing thousands of bone density images, ensuring robustness across diverse cases.</p><p><strong>Results: </strong>This model achieving an accuracy of 97.2%, with high sensitivity and specificity. These results significantly surpass those of existing OP detection methods, highlighting the effectiveness of the BoneVoyage framework in identifying subtle changes in bone density indicative of early-stage osteoporosis.</p><p><strong>Conclusions: </strong>BoneVoyage represents a significant advancement in the early detection of osteoporosis, offering a reliable tool for healthcare providers to identify at-risk individuals prematurely. The early detection facilitated by BoneVoyage allows for the implementation of preventive measures and targeted treatments.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"3-25"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241289314","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Osteoporosis (OP) is a condition that significantly decreases bone density and strength, often remaining undetected until the occurrence of a fracture. Timely identification of OP is essential for preventing fractures, reducing morbidity, and enhancing the quality of life.
Objective: This study aims to improve the accuracy, speed, and reliability of early-stage osteoporosis detection by integrating the compact architecture of Cascaded ShuffleNet with the pattern recognition prowess of Artificial Neural Networks (ANNs).
Methods: BoneVoyage leverages the efficiency of ShuffleNet and the analytical capabilities of ANNs to extract and analyze complex features from bone density scans. The framework was trained and validated on a comprehensive dataset containing thousands of bone density images, ensuring robustness across diverse cases.
Results: This model achieving an accuracy of 97.2%, with high sensitivity and specificity. These results significantly surpass those of existing OP detection methods, highlighting the effectiveness of the BoneVoyage framework in identifying subtle changes in bone density indicative of early-stage osteoporosis.
Conclusions: BoneVoyage represents a significant advancement in the early detection of osteoporosis, offering a reliable tool for healthcare providers to identify at-risk individuals prematurely. The early detection facilitated by BoneVoyage allows for the implementation of preventive measures and targeted treatments.
期刊介绍:
Research areas within the scope of the journal include:
Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants
X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional
Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics
Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes