Bonevoyage: Navigating the depths of osteoporosis detection with a dual-core ensemble of cascaded ShuffleNet and neural networks.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Journal of X-Ray Science and Technology Pub Date : 2025-01-01 Epub Date: 2024-11-27 DOI:10.1177/08953996241289314
Dhamodharan Srinivasan, Ajmeera Kiran, S Parameswari, Jeevanantham Vellaichamy
{"title":"Bonevoyage: Navigating the depths of osteoporosis detection with a dual-core ensemble of cascaded ShuffleNet and neural networks.","authors":"Dhamodharan Srinivasan, Ajmeera Kiran, S Parameswari, Jeevanantham Vellaichamy","doi":"10.1177/08953996241289314","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Osteoporosis (OP) is a condition that significantly decreases bone density and strength, often remaining undetected until the occurrence of a fracture. Timely identification of OP is essential for preventing fractures, reducing morbidity, and enhancing the quality of life.</p><p><strong>Objective: </strong>This study aims to improve the accuracy, speed, and reliability of early-stage osteoporosis detection by integrating the compact architecture of Cascaded ShuffleNet with the pattern recognition prowess of Artificial Neural Networks (ANNs).</p><p><strong>Methods: </strong>BoneVoyage leverages the efficiency of ShuffleNet and the analytical capabilities of ANNs to extract and analyze complex features from bone density scans. The framework was trained and validated on a comprehensive dataset containing thousands of bone density images, ensuring robustness across diverse cases.</p><p><strong>Results: </strong>This model achieving an accuracy of 97.2%, with high sensitivity and specificity. These results significantly surpass those of existing OP detection methods, highlighting the effectiveness of the BoneVoyage framework in identifying subtle changes in bone density indicative of early-stage osteoporosis.</p><p><strong>Conclusions: </strong>BoneVoyage represents a significant advancement in the early detection of osteoporosis, offering a reliable tool for healthcare providers to identify at-risk individuals prematurely. The early detection facilitated by BoneVoyage allows for the implementation of preventive measures and targeted treatments.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"3-25"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241289314","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Osteoporosis (OP) is a condition that significantly decreases bone density and strength, often remaining undetected until the occurrence of a fracture. Timely identification of OP is essential for preventing fractures, reducing morbidity, and enhancing the quality of life.

Objective: This study aims to improve the accuracy, speed, and reliability of early-stage osteoporosis detection by integrating the compact architecture of Cascaded ShuffleNet with the pattern recognition prowess of Artificial Neural Networks (ANNs).

Methods: BoneVoyage leverages the efficiency of ShuffleNet and the analytical capabilities of ANNs to extract and analyze complex features from bone density scans. The framework was trained and validated on a comprehensive dataset containing thousands of bone density images, ensuring robustness across diverse cases.

Results: This model achieving an accuracy of 97.2%, with high sensitivity and specificity. These results significantly surpass those of existing OP detection methods, highlighting the effectiveness of the BoneVoyage framework in identifying subtle changes in bone density indicative of early-stage osteoporosis.

Conclusions: BoneVoyage represents a significant advancement in the early detection of osteoporosis, offering a reliable tool for healthcare providers to identify at-risk individuals prematurely. The early detection facilitated by BoneVoyage allows for the implementation of preventive measures and targeted treatments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信