Selecting projection views based on error equidistribution for computed tomography.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Journal of X-Ray Science and Technology Pub Date : 2025-01-01 Epub Date: 2025-01-15 DOI:10.1177/08953996241289267
Yinghui Zhang, Xing Zhao, Ke Chen, Hongwei Li
{"title":"Selecting projection views based on error equidistribution for computed tomography.","authors":"Yinghui Zhang, Xing Zhao, Ke Chen, Hongwei Li","doi":"10.1177/08953996241289267","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nonuniform sampling is a useful technique to optimize the acquisition of projections with a limited budget. Existing methods for selecting important projection views have limitations, such as relying on blueprint images or excessive computing resources.</p><p><strong>Methods: </strong>We aim to develop a simple nonuniform sampling method for selecting informative projection views suitable for practical CT applications. The proposed algorithm is inspired by two key observations: projection errors contain angle-specific information, and adding views around error peaks effectively reduces errors and improves reconstruction. Given a budget and an initial view set, the proposed method involves: estimating projection errors based on current set of projection views, adding more projection views based on error equidistribution to smooth out errors, and final image reconstruction based on the new set of projection views. This process can be recursive, and the initial view can be obtained uniformly or from a prior for greater efficiency.</p><p><strong>Results: </strong>Comparison with popular view selection algorithms using simulated and real data demonstrates consistently superior performance in identifying optimal views and generating high-quality reconstructions. Notably, the new algorithm performs well in both PSNR and SSIM metrics while being computationally efficient, enhancing its practicality for CT optimization.</p><p><strong>Conclusions: </strong>A projection view selection algorithm based on error equidistribution is proposed, offering superior reconstruction quality and efficiency over existing methods. It is ready for real CT applications to optimize dose utilization.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"249-269"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241289267","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Nonuniform sampling is a useful technique to optimize the acquisition of projections with a limited budget. Existing methods for selecting important projection views have limitations, such as relying on blueprint images or excessive computing resources.

Methods: We aim to develop a simple nonuniform sampling method for selecting informative projection views suitable for practical CT applications. The proposed algorithm is inspired by two key observations: projection errors contain angle-specific information, and adding views around error peaks effectively reduces errors and improves reconstruction. Given a budget and an initial view set, the proposed method involves: estimating projection errors based on current set of projection views, adding more projection views based on error equidistribution to smooth out errors, and final image reconstruction based on the new set of projection views. This process can be recursive, and the initial view can be obtained uniformly or from a prior for greater efficiency.

Results: Comparison with popular view selection algorithms using simulated and real data demonstrates consistently superior performance in identifying optimal views and generating high-quality reconstructions. Notably, the new algorithm performs well in both PSNR and SSIM metrics while being computationally efficient, enhancing its practicality for CT optimization.

Conclusions: A projection view selection algorithm based on error equidistribution is proposed, offering superior reconstruction quality and efficiency over existing methods. It is ready for real CT applications to optimize dose utilization.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信