PYK2 in the dorsal striatum of Huntington's disease R6/2 mouse model

IF 5.1 2区 医学 Q1 NEUROSCIENCES
Omar Al Massadi , Mélody Labarchède , Benoit de Pins , Sophie Longueville , Albert Giralt , Theano Irinopoulou , Mythili Savariradjane , Enejda Subashi , Silvia Ginés , Jocelyne Caboche , Louise-Laure Mariani , Sandrine Betuing , Jean-Antoine Girault
{"title":"PYK2 in the dorsal striatum of Huntington's disease R6/2 mouse model","authors":"Omar Al Massadi ,&nbsp;Mélody Labarchède ,&nbsp;Benoit de Pins ,&nbsp;Sophie Longueville ,&nbsp;Albert Giralt ,&nbsp;Theano Irinopoulou ,&nbsp;Mythili Savariradjane ,&nbsp;Enejda Subashi ,&nbsp;Silvia Ginés ,&nbsp;Jocelyne Caboche ,&nbsp;Louise-Laure Mariani ,&nbsp;Sandrine Betuing ,&nbsp;Jean-Antoine Girault","doi":"10.1016/j.nbd.2025.106840","DOIUrl":null,"url":null,"abstract":"<div><div>Huntington's disease (HD) is a devastating disease due to autosomal dominant mutation in the <em>HTT</em> gene. Its pathophysiology involves multiple molecular alterations including transcriptional defects. We previously showed that in HD patients and mouse model, the protein levels of the non-receptor tyrosine kinase PYK2 were decreased in the hippocampus and that viral expression of PYK2 improved the hippocampal phenotype. Here, we investigated the possible contribution of PYK2 in the striatum, a brain region particularly altered in HD. PYK2 mRNA levels were decreased in the striatum and hippocampus of R6/2 mice, a severe HD model. Striatal PYK2 protein levels were also decreased in R6/2 mice and human patients. PYK2 knockout by itself did not result in motor symptoms observed in HD mouse models. We examined whether PYK2 deficiency participated in the R6/2 mice phenotype by expressing PYK2 in their dorsal striatum using AAV vectors. With an AAV1/<em>Camk2a</em> promoter, we did not observe significant improvement of body weight, clasping, motor activity and coordination (rotarod) alterations observed in R6/2 mice. With an AAV9/<em>SYN1</em> promoter we found a slightly higher body weight and a trend to better rotarod performance. Both viruses similarly transduced striatal projection neurons and somatostatin-positive interneurons but only AAV9/<em>SYN1</em> led to PYK2 expression in cholinergic and parvalbumin-positive interneurons. Expression of PYK2 in cholinergic interneurons may contribute to the slight effects observed. We conclude that PYK2 mRNA and protein levels are decreased in the striatum as in hippocampus of HD patients and mouse models. However, in contrast to hippocampus, striatal viral expression of PYK2 has only a minor effect on the R6/2 model striatal phenotype.</div></div>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":"207 ","pages":"Article 106840"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Disease","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969996125000567","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Huntington's disease (HD) is a devastating disease due to autosomal dominant mutation in the HTT gene. Its pathophysiology involves multiple molecular alterations including transcriptional defects. We previously showed that in HD patients and mouse model, the protein levels of the non-receptor tyrosine kinase PYK2 were decreased in the hippocampus and that viral expression of PYK2 improved the hippocampal phenotype. Here, we investigated the possible contribution of PYK2 in the striatum, a brain region particularly altered in HD. PYK2 mRNA levels were decreased in the striatum and hippocampus of R6/2 mice, a severe HD model. Striatal PYK2 protein levels were also decreased in R6/2 mice and human patients. PYK2 knockout by itself did not result in motor symptoms observed in HD mouse models. We examined whether PYK2 deficiency participated in the R6/2 mice phenotype by expressing PYK2 in their dorsal striatum using AAV vectors. With an AAV1/Camk2a promoter, we did not observe significant improvement of body weight, clasping, motor activity and coordination (rotarod) alterations observed in R6/2 mice. With an AAV9/SYN1 promoter we found a slightly higher body weight and a trend to better rotarod performance. Both viruses similarly transduced striatal projection neurons and somatostatin-positive interneurons but only AAV9/SYN1 led to PYK2 expression in cholinergic and parvalbumin-positive interneurons. Expression of PYK2 in cholinergic interneurons may contribute to the slight effects observed. We conclude that PYK2 mRNA and protein levels are decreased in the striatum as in hippocampus of HD patients and mouse models. However, in contrast to hippocampus, striatal viral expression of PYK2 has only a minor effect on the R6/2 model striatal phenotype.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurobiology of Disease
Neurobiology of Disease 医学-神经科学
CiteScore
11.20
自引率
3.30%
发文量
270
审稿时长
76 days
期刊介绍: Neurobiology of Disease is a major international journal at the interface between basic and clinical neuroscience. The journal provides a forum for the publication of top quality research papers on: molecular and cellular definitions of disease mechanisms, the neural systems and underpinning behavioral disorders, the genetics of inherited neurological and psychiatric diseases, nervous system aging, and findings relevant to the development of new therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信