{"title":"Characterization of an Iterative Halogenase Acting on Ribosomal Peptides Underlies the Combinatorial Biosynthesis Logic of Lasso Peptides.","authors":"Jin-Long Lu, Jiao-Jiao Cui, Zhe-Yang Hu, Jin-Ming Di, Yuan-Yuan Li, Jiang Xiong, Yu-Meng Jiao, Kun Gao, Jian Min, Shangwen Luo, Shi-Hui Dong","doi":"10.1021/acs.jnatprod.4c01199","DOIUrl":null,"url":null,"abstract":"<p><p>Halogenation is commonly utilized in medicinal chemistry for the improvement of drug leads. Flavin-dependent halogenases (FDHs) are ubiquitous across all domains of life, yet iterative FDHs are rare in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Herein, we characterize a novel iterative FDH, ChlH, which orchestrates nonsequential chlorination of two specific Trp within the core peptide of a lasso precursor containing three Trp. Biochemical and computational studies enable the characterization of ChlH, which employs unique protein-peptide interactions (PPIs) between its distinct N- and C-terminal motifs and a crucial recognition sequence (RS-II) downstream of RS-I in the leader peptide. Previous studies have demonstrated the indispensability of RS-I for lasso peptide biosynthesis, while RS-II was considered to be replaceable. Furthermore, we find that the core peptide substantially contributes to the PPI. Bioinformatic analysis reveals the prevalence of homologous FDHs in the biosynthetic gene clusters (BGCs) of various RiPP classes. Heterologous expression of the <i>chl</i> BGC yields non-, mono-, and dichlorinated lasso peptides, with chlorination, particularly dichlorination, enhancing their antibacterial activity. This study expands the FDH activity spectrum to include iterative catalysis on ribosomal peptides and underscores the significance of RS-II in tailoring enzymes for the combinatorial biosynthesis of lasso peptides.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.4c01199","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Halogenation is commonly utilized in medicinal chemistry for the improvement of drug leads. Flavin-dependent halogenases (FDHs) are ubiquitous across all domains of life, yet iterative FDHs are rare in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Herein, we characterize a novel iterative FDH, ChlH, which orchestrates nonsequential chlorination of two specific Trp within the core peptide of a lasso precursor containing three Trp. Biochemical and computational studies enable the characterization of ChlH, which employs unique protein-peptide interactions (PPIs) between its distinct N- and C-terminal motifs and a crucial recognition sequence (RS-II) downstream of RS-I in the leader peptide. Previous studies have demonstrated the indispensability of RS-I for lasso peptide biosynthesis, while RS-II was considered to be replaceable. Furthermore, we find that the core peptide substantially contributes to the PPI. Bioinformatic analysis reveals the prevalence of homologous FDHs in the biosynthetic gene clusters (BGCs) of various RiPP classes. Heterologous expression of the chl BGC yields non-, mono-, and dichlorinated lasso peptides, with chlorination, particularly dichlorination, enhancing their antibacterial activity. This study expands the FDH activity spectrum to include iterative catalysis on ribosomal peptides and underscores the significance of RS-II in tailoring enzymes for the combinatorial biosynthesis of lasso peptides.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.