Disease diagnostics using machine learning of B cell and T cell receptor sequences

IF 45.8 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Pub Date : 2025-02-21
Maxim E. Zaslavsky, Erin Craig, Jackson K. Michuda, Nidhi Sehgal, Nikhil Ram-Mohan, Ji-Yeun Lee, Khoa D. Nguyen, Ramona A. Hoh, Tho D. Pham, Katharina Röltgen, Brandon Lam, Ella S. Parsons, Susan R. Macwana, Wade DeJager, Elizabeth M. Drapeau, Krishna M. Roskin, Charlotte Cunningham-Rundles, M. Anthony Moody, Barton F. Haynes, Jason D. Goldman, James R. Heath, R. Sharon Chinthrajah, Kari C. Nadeau, Benjamin A. Pinsky, Catherine A. Blish, Scott E. Hensley, Kent Jensen, Everett Meyer, Imelda Balboni, Paul J. Utz, Joan T. Merrill, Joel M. Guthridge, Judith A. James, Samuel Yang, Robert Tibshirani, Anshul Kundaje, Scott D. Boyd
{"title":"Disease diagnostics using machine learning of B cell and T cell receptor sequences","authors":"Maxim E. Zaslavsky,&nbsp;Erin Craig,&nbsp;Jackson K. Michuda,&nbsp;Nidhi Sehgal,&nbsp;Nikhil Ram-Mohan,&nbsp;Ji-Yeun Lee,&nbsp;Khoa D. Nguyen,&nbsp;Ramona A. Hoh,&nbsp;Tho D. Pham,&nbsp;Katharina Röltgen,&nbsp;Brandon Lam,&nbsp;Ella S. Parsons,&nbsp;Susan R. Macwana,&nbsp;Wade DeJager,&nbsp;Elizabeth M. Drapeau,&nbsp;Krishna M. Roskin,&nbsp;Charlotte Cunningham-Rundles,&nbsp;M. Anthony Moody,&nbsp;Barton F. Haynes,&nbsp;Jason D. Goldman,&nbsp;James R. Heath,&nbsp;R. Sharon Chinthrajah,&nbsp;Kari C. Nadeau,&nbsp;Benjamin A. Pinsky,&nbsp;Catherine A. Blish,&nbsp;Scott E. Hensley,&nbsp;Kent Jensen,&nbsp;Everett Meyer,&nbsp;Imelda Balboni,&nbsp;Paul J. Utz,&nbsp;Joan T. Merrill,&nbsp;Joel M. Guthridge,&nbsp;Judith A. James,&nbsp;Samuel Yang,&nbsp;Robert Tibshirani,&nbsp;Anshul Kundaje,&nbsp;Scott D. Boyd","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Clinical diagnosis typically incorporates physical examination, patient history, various laboratory tests, and imaging studies but makes limited use of the human immune system’s own record of antigen exposures encoded by receptors on B cells and T cells. We analyzed immune receptor datasets from 593 individuals to develop MAchine Learning for Immunological Diagnosis, an interpretive framework to screen for multiple illnesses simultaneously or precisely test for one condition. This approach detects specific infections, autoimmune disorders, vaccine responses, and disease severity differences. Human-interpretable features of the model recapitulate known immune responses to severe acute respiratory syndrome <i>coronavirus</i> 2, influenza, and human immunodeficiency virus, highlight antigen-specific receptors, and reveal distinct characteristics of systemic lupus erythematosus and type-1 diabetes autoreactivity. This analysis framework has broad potential for scientific and clinical interpretation of immune responses.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6736","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adp2407","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Clinical diagnosis typically incorporates physical examination, patient history, various laboratory tests, and imaging studies but makes limited use of the human immune system’s own record of antigen exposures encoded by receptors on B cells and T cells. We analyzed immune receptor datasets from 593 individuals to develop MAchine Learning for Immunological Diagnosis, an interpretive framework to screen for multiple illnesses simultaneously or precisely test for one condition. This approach detects specific infections, autoimmune disorders, vaccine responses, and disease severity differences. Human-interpretable features of the model recapitulate known immune responses to severe acute respiratory syndrome coronavirus 2, influenza, and human immunodeficiency virus, highlight antigen-specific receptors, and reveal distinct characteristics of systemic lupus erythematosus and type-1 diabetes autoreactivity. This analysis framework has broad potential for scientific and clinical interpretation of immune responses.

Abstract Image

使用B细胞和T细胞受体序列的机器学习进行疾病诊断
临床诊断通常包括体格检查、患者病史、各种实验室检查和影像学研究,但对人体免疫系统自身的B细胞和T细胞受体编码的抗原暴露记录的使用有限。我们分析了来自593个人的免疫受体数据集,以开发用于免疫诊断的机器学习,这是一个同时筛查多种疾病或精确测试一种疾病的解释性框架。该方法可检测特定感染、自身免疫性疾病、疫苗反应和疾病严重程度差异。该模型的人类可解释特征概括了已知的对严重急性呼吸综合征冠状病毒2、流感和人类免疫缺陷病毒的免疫反应,突出了抗原特异性受体,并揭示了系统性红斑狼疮和1型糖尿病自身反应性的独特特征。该分析框架在免疫反应的科学和临床解释方面具有广泛的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信