Prediction of pressure-induced superconductivity in the ternary systems CaYH2n (n = 3–6) at moderate pressures†

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jinghong Zhao, Bole Chen, Shichang Li, Ying Chang, Xu Yang, Mingyu Chen and Dengfeng Li
{"title":"Prediction of pressure-induced superconductivity in the ternary systems CaYH2n (n = 3–6) at moderate pressures†","authors":"Jinghong Zhao, Bole Chen, Shichang Li, Ying Chang, Xu Yang, Mingyu Chen and Dengfeng Li","doi":"10.1039/D4TC03987D","DOIUrl":null,"url":null,"abstract":"<p >Hydrogen-rich ternary compounds are regarded as promising candidates for room-temperature superconductivity, primarily due to the synergistic effects of their crystal structures and electronic properties under high-pressure conditions. However, the vast chemical space of these compounds is vast, making its exploration particularly challenging. In this study, we explore the high-pressure structures, electronic characteristics, and superconducting behavior of the ternary calcium–yttrium–hydrogen (Ca–Y–H) system using a predictive approach that combines particle swarm optimization (PSO) with first-principles calculations. Our research identifies four stable structures, each characterized by a unique hydrogen sublattice arrangement: <em>Pmmm</em>-CaYH<small><sub>6</sub></small>, <em>P</em>4/<em>mmm</em>-CaYH<small><sub>8</sub></small>, <em>Cmmm</em>-CaYH<small><sub>10</sub></small>, and <em>Fd</em><img><em>m</em>-CaYH<small><sub>12</sub></small>. All predicted Ca–Y–H structures exhibit characteristics of high-temperature superconductors. The electron localization function (ELF) analysis reveals no significant interaction between hydrogen atoms in the CaYH<small><sub>6</sub></small> compound, while the other stoichiometric compositions show weak H–H covalent interactions. Notably, CaYH<small><sub>6</sub></small> maintains dynamic stability even at ambient pressure and exhibits a high superconducting critical temperature (<em>T</em><small><sub>c</sub></small>) of 60 K. At an elevated pressure of 100 GPa, the pressure-stabilized CaYH<small><sub>8</sub></small> and CaYH<small><sub>10</sub></small> structures demonstrate high <em>T</em><small><sub>c</sub></small> values of 90 K and 108 K, respectively. With further increased hydrogen content, CaYH<small><sub>12</sub></small> remains dynamically stable up to 150 GPa and exhibits a remarkable <em>T</em><small><sub>c</sub></small> of 225 K. Furthermore, this study discusses how phonon softening in the mid-frequency region, primarily induced by Fermi surface nesting, effectively enhances electron–phonon coupling.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 8","pages":" 4128-4136"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc03987d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen-rich ternary compounds are regarded as promising candidates for room-temperature superconductivity, primarily due to the synergistic effects of their crystal structures and electronic properties under high-pressure conditions. However, the vast chemical space of these compounds is vast, making its exploration particularly challenging. In this study, we explore the high-pressure structures, electronic characteristics, and superconducting behavior of the ternary calcium–yttrium–hydrogen (Ca–Y–H) system using a predictive approach that combines particle swarm optimization (PSO) with first-principles calculations. Our research identifies four stable structures, each characterized by a unique hydrogen sublattice arrangement: Pmmm-CaYH6, P4/mmm-CaYH8, Cmmm-CaYH10, and Fdm-CaYH12. All predicted Ca–Y–H structures exhibit characteristics of high-temperature superconductors. The electron localization function (ELF) analysis reveals no significant interaction between hydrogen atoms in the CaYH6 compound, while the other stoichiometric compositions show weak H–H covalent interactions. Notably, CaYH6 maintains dynamic stability even at ambient pressure and exhibits a high superconducting critical temperature (Tc) of 60 K. At an elevated pressure of 100 GPa, the pressure-stabilized CaYH8 and CaYH10 structures demonstrate high Tc values of 90 K and 108 K, respectively. With further increased hydrogen content, CaYH12 remains dynamically stable up to 150 GPa and exhibits a remarkable Tc of 225 K. Furthermore, this study discusses how phonon softening in the mid-frequency region, primarily induced by Fermi surface nesting, effectively enhances electron–phonon coupling.

Abstract Image

中等压力下三元体系CaYH2n (n = 3-6)压力诱导超导性的预测
富氢三元化合物被认为是有希望的室温超导候选者,主要是由于它们在高压条件下的晶体结构和电子性质的协同效应。然而,这些化合物的巨大化学空间是巨大的,这使得它的探索特别具有挑战性。在这项研究中,我们利用粒子群优化(PSO)和第一性原理计算相结合的预测方法,探索了三元钙-钇-氢(Ca-Y-H)体系的高压结构、电子特性和超导行为。我们的研究确定了四个稳定的结构,每个结构都具有独特的氢亚晶格排列:pmm - cayh6, P4/mm - cayh8, Cmmm-CaYH10和Fdm-CaYH12。所有预测的Ca-Y-H结构都表现出高温超导体的特征。电子定位函数(ELF)分析表明,CaYH6化合物中氢原子之间没有明显的相互作用,而其他化学计量成分表现出弱的H-H共价相互作用。值得注意的是,CaYH6即使在环境压力下也能保持动态稳定性,并表现出60 K的高超导临界温度(Tc)。在100gpa的高压下,压力稳定的CaYH8和CaYH10结构的Tc值分别为90k和108k。随着氢含量的进一步增加,CaYH12在高达150 GPa的温度下保持动态稳定,并表现出225 K的显著Tc。此外,本研究还讨论了主要由费米表面嵌套引起的中频区域声子软化如何有效地增强电子-声子耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信