Multi-objective optimization of thermochromic glazing: Evaluating useful daylight illuminance, circadian stimulus, and energy performance with implications for sleep quality improvement

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Lai Fan , Liang Xie , Qikang Zhong
{"title":"Multi-objective optimization of thermochromic glazing: Evaluating useful daylight illuminance, circadian stimulus, and energy performance with implications for sleep quality improvement","authors":"Lai Fan ,&nbsp;Liang Xie ,&nbsp;Qikang Zhong","doi":"10.1016/j.enbuild.2025.115460","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the application of thermochromic (TC) glazing to improve energy efficiency, Useful Daylight Illuminance (UDI), and Circadian Stimulus (CS) in a typical slab-style elderly apartment in Changsha. A multi-objective optimization approach was utilized, integrating GA-BP neural networks for predictive modeling and the Multi-Objective Grey Wolf Optimizer (MOGWO) to evaluate and balance the impacts of different outcomes on the indoor environment. The results demonstrate that TC glazing reduces energy consumption by up to 40 % compared to conventional glazing while stabilizing indoor temperatures and enhancing daylighting conditions, with a 27 % increase in UDI and a 15 % improvement in CS alignment. These enhancements support circadian rhythm regulation and contribute to a more comfortable indoor environment, ultimately improving sleep quality.</div><div>These findings underscore the effectiveness of TC glazing in retrofitting elderly apartments, offering significant energy savings and health-related benefits, providing a scalable framework for developing sustainable, health-supportive indoor environments applicable to similar climates and residential building types.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"333 ","pages":"Article 115460"},"PeriodicalIF":6.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825001902","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the application of thermochromic (TC) glazing to improve energy efficiency, Useful Daylight Illuminance (UDI), and Circadian Stimulus (CS) in a typical slab-style elderly apartment in Changsha. A multi-objective optimization approach was utilized, integrating GA-BP neural networks for predictive modeling and the Multi-Objective Grey Wolf Optimizer (MOGWO) to evaluate and balance the impacts of different outcomes on the indoor environment. The results demonstrate that TC glazing reduces energy consumption by up to 40 % compared to conventional glazing while stabilizing indoor temperatures and enhancing daylighting conditions, with a 27 % increase in UDI and a 15 % improvement in CS alignment. These enhancements support circadian rhythm regulation and contribute to a more comfortable indoor environment, ultimately improving sleep quality.
These findings underscore the effectiveness of TC glazing in retrofitting elderly apartments, offering significant energy savings and health-related benefits, providing a scalable framework for developing sustainable, health-supportive indoor environments applicable to similar climates and residential building types.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信