Hua Li , Yu Liu , Nidthaya Seephua , Chuenjit Prakitchaiwattana , Rui-Xin Liu , Ju-Sheng Zheng , Sirithon Siriamornpun
{"title":"Fortification of cricket and silkworm pupae powders to improve nutritional quality and digestibility of rice noodles","authors":"Hua Li , Yu Liu , Nidthaya Seephua , Chuenjit Prakitchaiwattana , Rui-Xin Liu , Ju-Sheng Zheng , Sirithon Siriamornpun","doi":"10.1016/j.fochx.2025.102279","DOIUrl":null,"url":null,"abstract":"<div><div>To improve the nutritional value and biofunctionalities of traditional rice noodles, this study focused on the effects of incorporating cricket powder (CP) and silkworm pupae powder (SP) on the protein content and digestibility, starch digestibility, and antioxidant potential, as well as the sensory and cooking qualities of rice noodles. Compared to the control (4.96 % and 63.25 %), CP and SP significantly increased the protein content (12.06 %–25.85 %) and in vitro digestibility (71.61 %–90.58 %) (<em>p</em> < 0.05). CP and SP also considerably reduced the estimated glycemic index from 70.36 to 53.47, which may be partly related to the binding of more protein and lipid, as revealed by Fourier-transform infrared spectroscopy. Nevertheless, scanning electron microscopy showed a loose and porous noodle structure, which contributed to higher cooking loss, reduced cohesiveness, and lower tensile strength. Overall, these findings suggest that edible insect powders are promising ingredients for developing functional foods with enhanced nutritional properties.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"26 ","pages":"Article 102279"},"PeriodicalIF":6.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157525001269","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the nutritional value and biofunctionalities of traditional rice noodles, this study focused on the effects of incorporating cricket powder (CP) and silkworm pupae powder (SP) on the protein content and digestibility, starch digestibility, and antioxidant potential, as well as the sensory and cooking qualities of rice noodles. Compared to the control (4.96 % and 63.25 %), CP and SP significantly increased the protein content (12.06 %–25.85 %) and in vitro digestibility (71.61 %–90.58 %) (p < 0.05). CP and SP also considerably reduced the estimated glycemic index from 70.36 to 53.47, which may be partly related to the binding of more protein and lipid, as revealed by Fourier-transform infrared spectroscopy. Nevertheless, scanning electron microscopy showed a loose and porous noodle structure, which contributed to higher cooking loss, reduced cohesiveness, and lower tensile strength. Overall, these findings suggest that edible insect powders are promising ingredients for developing functional foods with enhanced nutritional properties.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.