Yuying Dong, Yuezhen Wang, Meiru Zhang, Min Gao, Shihan Wang, Yongsheng Wang, Zhihan Wang
{"title":"Electrostatic induced Rana chensinensis ovum protein isolates/xanthan gum complex particles stabilized HIPPE for β-carotene loading and dysphagia","authors":"Yuying Dong, Yuezhen Wang, Meiru Zhang, Min Gao, Shihan Wang, Yongsheng Wang, Zhihan Wang","doi":"10.1016/j.foodchem.2025.143520","DOIUrl":null,"url":null,"abstract":"<em>Rana chensinensis</em> ovum protein isolates and xanthan gum complex particles were constructed through electrostatic induced aggregation and their ability as an emulsifier for high internal phase Pickering emulsions (HIPPE) was explored. The complex particles showed a clear aggregated structure as the xanthan gum content increased. It also impacted the particle size of the HIPPE droplets, which decreased to 35 μm with a zeta potential of −41.6 ± 1.23 mV. Rheological tests showed that the oscillatory frequency G\" increased with increasing xanthan gum. It was higher than G' and appeared to be shear-thinning. In addition, the prepared HIPPE showed impressive stability under freeze-thaw reversible, centrifugal, and heating conditions. The HIPPE also showed notable β-carotene delivery potential with an encapsulation rate of achieved 90.9 %, while improving stability and bioaccessibility. Meanwhile, The HIPPE met the dietary criteria of International Dysphagia Diet Standardization Initiative (IDDSI) Class 4 viscous/extremely dense foods.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"15 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.143520","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Rana chensinensis ovum protein isolates and xanthan gum complex particles were constructed through electrostatic induced aggregation and their ability as an emulsifier for high internal phase Pickering emulsions (HIPPE) was explored. The complex particles showed a clear aggregated structure as the xanthan gum content increased. It also impacted the particle size of the HIPPE droplets, which decreased to 35 μm with a zeta potential of −41.6 ± 1.23 mV. Rheological tests showed that the oscillatory frequency G" increased with increasing xanthan gum. It was higher than G' and appeared to be shear-thinning. In addition, the prepared HIPPE showed impressive stability under freeze-thaw reversible, centrifugal, and heating conditions. The HIPPE also showed notable β-carotene delivery potential with an encapsulation rate of achieved 90.9 %, while improving stability and bioaccessibility. Meanwhile, The HIPPE met the dietary criteria of International Dysphagia Diet Standardization Initiative (IDDSI) Class 4 viscous/extremely dense foods.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.