{"title":"High-Level Decision Making in a Hierarchical Control Framework: Integrating HMDP and MPC for Autonomous Systems","authors":"Xue-Fang Wang;Jingjing Jiang;Wen-Hua Chen","doi":"10.1109/TCYB.2025.3535159","DOIUrl":null,"url":null,"abstract":"This article addresses challenges of autonomous decisions making influenced by discrete system states, underlying continuous dynamics, and evolving operational environments. A comprehensive framework is proposed, encompassing new modeling, problem formulation, control design, and stability analysis. The framework integrates continuous system dynamics, used for low-level control, with discrete Markov decision processes (MDP) for high-level decision making. To capture the interactions between these domains, the decision-making system is modeled as a hybrid system consisting of a controlled MDP and autonomous (uncontrolled) continuous dynamics, collectively referred to as the hybrid Markov decision process (HMDP). The design focuses on ensuring safety and optimality by accounting for both discrete and continuous state variables across different levels. With the help of the model predictive control (MPC) concept, a decision-making scheme is developed for the hybrid model, with guarantees for recursive feasibility and stability. The proposed framework is applied to the autonomous lane changing system for intelligent vehicles, and simulation shows its capability to handle diverse behaviors in dynamic and complex environments.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 4","pages":"1903-1916"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10892352/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This article addresses challenges of autonomous decisions making influenced by discrete system states, underlying continuous dynamics, and evolving operational environments. A comprehensive framework is proposed, encompassing new modeling, problem formulation, control design, and stability analysis. The framework integrates continuous system dynamics, used for low-level control, with discrete Markov decision processes (MDP) for high-level decision making. To capture the interactions between these domains, the decision-making system is modeled as a hybrid system consisting of a controlled MDP and autonomous (uncontrolled) continuous dynamics, collectively referred to as the hybrid Markov decision process (HMDP). The design focuses on ensuring safety and optimality by accounting for both discrete and continuous state variables across different levels. With the help of the model predictive control (MPC) concept, a decision-making scheme is developed for the hybrid model, with guarantees for recursive feasibility and stability. The proposed framework is applied to the autonomous lane changing system for intelligent vehicles, and simulation shows its capability to handle diverse behaviors in dynamic and complex environments.
期刊介绍:
The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.