Application of nDATA Workflow for Semi-Quantitative Screening of 1094 Pesticide Residues in Fruits and Vegetables Using UHPLC/ESI Q-Orbitrap Full MS/vDIA.

Jian Wang, Willis Chow, Jon W Wong
{"title":"Application of nDATA Workflow for Semi-Quantitative Screening of 1094 Pesticide Residues in Fruits and Vegetables Using UHPLC/ESI Q-Orbitrap Full MS/vDIA.","authors":"Jian Wang, Willis Chow, Jon W Wong","doi":"10.1093/jaoacint/qsaf009","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cost-effective multi-residue pesticide methods with a broad detection scope are desired for risk-based monitoring programs.</p><p><strong>Objective: </strong>The aim was to evaluate the nDATA (non-target Data Acquisition for Target Analysis) workflow using UHPLC/ESI quadrupole-Orbitrap (Q-Orbitrap) mass spectrometry and semi-quantitate 1094 pesticides in fruits and vegetables.</p><p><strong>Methods: </strong>Pesticide extracts from fresh produce were prepared using the QuEChERS procedure. nDATA was carried out by utilizing UHPLC/ESI Q-Orbitrap Full MS scan and variable data independent acquisition (vDIA). Data were processed using a Compound Database (CDB, 1094 pesticides) and one-point standard calibration with internal standards for semi-quantitation. Data processing criteria were based on retention time (± 0.5 min) and mass accuracy of a precursor ion (± 5 ppm) (RTP by full MS), or retention time (± 0.5 min) and mass accuracy of a precursor ion (± 5 ppm) and that of its fragment ion (± 10 ppm) (RTFI by full MS/vDIA).</p><p><strong>Results: </strong>RTP found 1010 and 1094 pesticides, while RTFI identified 906 and 1029 pesticides at 10 and 100 μg/kg, respectively. RTF detected all 30 LC-amenable pesticides and RTFI identified 29 of 30 LC-amenable pesticides in eight proficiency testing samples. There were 42 pairs of co-eluting isomeric pesticides and five pairs of isobaric pesticides that were not separated by mass resolving power and/or chromatographic separation (ΔtR < 0.12 min) with the current instrument parameter settings.</p><p><strong>Conclusions: </strong>The validated nDATA workflow using UHPLC/ESI Q-Orbitrap Full MS/vDIA proved to be a comprehensive detection method for semi-quantitative screening of 1094 pesticides in fruits and vegetables.</p><p><strong>Highlights: </strong>nDATA combines both non-target data acquisition and target analysis. The non-target data acquisition generates data for retrospective analysis of a large number (over one thousand) of pesticides. The target analysis using a compound database (CDB) and a one-point standard calibration affords confidence in semi-quantitative screening results.</p>","PeriodicalId":94064,"journal":{"name":"Journal of AOAC International","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of AOAC International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jaoacint/qsaf009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cost-effective multi-residue pesticide methods with a broad detection scope are desired for risk-based monitoring programs.

Objective: The aim was to evaluate the nDATA (non-target Data Acquisition for Target Analysis) workflow using UHPLC/ESI quadrupole-Orbitrap (Q-Orbitrap) mass spectrometry and semi-quantitate 1094 pesticides in fruits and vegetables.

Methods: Pesticide extracts from fresh produce were prepared using the QuEChERS procedure. nDATA was carried out by utilizing UHPLC/ESI Q-Orbitrap Full MS scan and variable data independent acquisition (vDIA). Data were processed using a Compound Database (CDB, 1094 pesticides) and one-point standard calibration with internal standards for semi-quantitation. Data processing criteria were based on retention time (± 0.5 min) and mass accuracy of a precursor ion (± 5 ppm) (RTP by full MS), or retention time (± 0.5 min) and mass accuracy of a precursor ion (± 5 ppm) and that of its fragment ion (± 10 ppm) (RTFI by full MS/vDIA).

Results: RTP found 1010 and 1094 pesticides, while RTFI identified 906 and 1029 pesticides at 10 and 100 μg/kg, respectively. RTF detected all 30 LC-amenable pesticides and RTFI identified 29 of 30 LC-amenable pesticides in eight proficiency testing samples. There were 42 pairs of co-eluting isomeric pesticides and five pairs of isobaric pesticides that were not separated by mass resolving power and/or chromatographic separation (ΔtR < 0.12 min) with the current instrument parameter settings.

Conclusions: The validated nDATA workflow using UHPLC/ESI Q-Orbitrap Full MS/vDIA proved to be a comprehensive detection method for semi-quantitative screening of 1094 pesticides in fruits and vegetables.

Highlights: nDATA combines both non-target data acquisition and target analysis. The non-target data acquisition generates data for retrospective analysis of a large number (over one thousand) of pesticides. The target analysis using a compound database (CDB) and a one-point standard calibration affords confidence in semi-quantitative screening results.

应用nDATA工作流程UHPLC/ESI Q-Orbitrap全质谱/vDIA半定量筛选果蔬中1094种农药残留
背景:基于风险的监测项目需要成本效益高、检测范围广的多残留农药方法:目的:评估使用超高效液相色谱/电喷雾离子源四极杆-轨道阱(Q-Orbitrap)质谱的 nDATA(用于目标分析的非目标数据采集)工作流程以及水果和蔬菜中 1094 种农药的半定量方法:采用 UHPLC/ESI Q-Orbitrap 全质谱扫描和可变数据独立采集 (vDIA) 方法进行 nDATA 分析。使用化合物数据库(CDB,1094 种农药)和单点标准校准进行数据处理,并使用内标进行半定量。数据处理标准基于保留时间(± 0.5 分钟)和前体离子的质量精度(± 5 ppm)(全质谱 RTP),或保留时间(± 0.5 分钟)和前体离子的质量精度(± 5 ppm)及其碎片离子的质量精度(± 10 ppm)(全质谱/vDIA RTFI):结果:RTP 分别发现了 1010 种和 1094 种农药,而 RTFI 在 10 微克/千克和 100 微克/千克时分别发现了 906 种和 1029 种农药。在 8 个能力验证样品中,RTF 检测出了所有 30 种可低浓度释放的农药,RTFI 则鉴定出了 30 种可低浓度释放的农药中的 29 种。在当前的仪器参数设置下,有 42 对共分离异构体农药和 5 对异构体农药的质量分辨率和/或色谱分离度(ΔtR < 0.12 分钟)无法分离:经过验证的 nDATA 工作流程使用 UHPLC/ESI Q-Orbitrap Full MS/vDIA 被证明是一种全面的检测方法,可对水果和蔬菜中的 1094 种农药进行半定量筛查。nDATA 结合了非靶标数据采集和靶标分析。非靶标数据采集生成的数据可用于对大量(超过一千种)农药进行回顾性分析。使用化合物数据库 (CDB) 和单点标准校准进行目标分析,可确保对半定量筛选结果的信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信