Enhancing urban building energy models with Vision Transformers: A Case study in material classification from Google street view

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Yingjie Liu, Narjes Abbasabadi
{"title":"Enhancing urban building energy models with Vision Transformers: A Case study in material classification from Google street view","authors":"Yingjie Liu,&nbsp;Narjes Abbasabadi","doi":"10.1016/j.enbuild.2025.115457","DOIUrl":null,"url":null,"abstract":"<div><div>The growing urbanization and increased urban energy consumption highlight the need for energy use and greenhouse gas emissions reduction strategies. Urban Building Energy Modeling (UBEM) emerged as a valuable tool for managing and optimizing energy consumption at the neighborhood and city scales to support carbon reduction goals. However, the accuracy of the UBEM is often limited by the lack of large-scale building façade material dataset. This study introduces a new approach to enhance UBEM by integrating an automatic deep learning material classification pipeline. The pipeline leverages multiple views of Google Street View Images (SVIs) to extract building façade material information, utilizing two Swin Vision Transformer (ViT) models to capture both global and local features from the SVIs. The pipeline achieved a main material classification accuracy reached 97.08%, and the sub-category accuracy reached 91.56% in a multi-class classification task. As the first study to apply a deep learning model for material classification to enhance the UBEM framework, this work was tested on the University of Washington campus, which features diverse facade materials. The model demonstrated its effectiveness by achieving an overall accuracy increase of 11.4% in year-round total operational energy simulations. The scalability of this material classification pipeline enables a more accurate and cost-effective application of UBEM at broader urban scales.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"333 ","pages":"Article 115457"},"PeriodicalIF":6.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825001872","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The growing urbanization and increased urban energy consumption highlight the need for energy use and greenhouse gas emissions reduction strategies. Urban Building Energy Modeling (UBEM) emerged as a valuable tool for managing and optimizing energy consumption at the neighborhood and city scales to support carbon reduction goals. However, the accuracy of the UBEM is often limited by the lack of large-scale building façade material dataset. This study introduces a new approach to enhance UBEM by integrating an automatic deep learning material classification pipeline. The pipeline leverages multiple views of Google Street View Images (SVIs) to extract building façade material information, utilizing two Swin Vision Transformer (ViT) models to capture both global and local features from the SVIs. The pipeline achieved a main material classification accuracy reached 97.08%, and the sub-category accuracy reached 91.56% in a multi-class classification task. As the first study to apply a deep learning model for material classification to enhance the UBEM framework, this work was tested on the University of Washington campus, which features diverse facade materials. The model demonstrated its effectiveness by achieving an overall accuracy increase of 11.4% in year-round total operational energy simulations. The scalability of this material classification pipeline enables a more accurate and cost-effective application of UBEM at broader urban scales.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信