Cassondra M. Eng , Leslie A. Patton , Martha Ann Bell
{"title":"Infant attention and frontal EEG neuromarkers of childhood ADHD","authors":"Cassondra M. Eng , Leslie A. Patton , Martha Ann Bell","doi":"10.1016/j.dcn.2025.101524","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous electroencephalogram (EEG) studies have sought to elucidate the neural mechanisms of attention deficit hyperactivity disorder (ADHD), with most of the existing literature focused on children, adolescents, and adults. In this retrospective study, measures of frontal EEG power and behavioral attention of 40 5-month-old infants later diagnosed with ADHD in childhood were compared to 40 systematically matched-control infants. Compared to the control group, infants in the ADHD group exhibited longer looking fixations during an attention task. Frontal EEG power in the 6–9 Hz infant alpha band was lower in the ADHD group compared to the control group. Mean frontal EEG power was associated with visual fixations, underscoring specific attention behavior corresponding to frontal brain development in infancy. Infants later diagnosed with ADHD exhibited higher attention problems in childhood at ages 4 and 9 compared to the control group, and longer looking fixations in infancy were associated with higher childhood ADHD-related symptomatology. These findings suggest that decreased infant frontal EEG power and looking fixations as early as 5-months of age may serve as important early markers of later ADHD and can aid in building a more comprehensive model of ADHD from a developmental neuroscience approach.</div></div>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"72 ","pages":"Article 101524"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878929325000192","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous electroencephalogram (EEG) studies have sought to elucidate the neural mechanisms of attention deficit hyperactivity disorder (ADHD), with most of the existing literature focused on children, adolescents, and adults. In this retrospective study, measures of frontal EEG power and behavioral attention of 40 5-month-old infants later diagnosed with ADHD in childhood were compared to 40 systematically matched-control infants. Compared to the control group, infants in the ADHD group exhibited longer looking fixations during an attention task. Frontal EEG power in the 6–9 Hz infant alpha band was lower in the ADHD group compared to the control group. Mean frontal EEG power was associated with visual fixations, underscoring specific attention behavior corresponding to frontal brain development in infancy. Infants later diagnosed with ADHD exhibited higher attention problems in childhood at ages 4 and 9 compared to the control group, and longer looking fixations in infancy were associated with higher childhood ADHD-related symptomatology. These findings suggest that decreased infant frontal EEG power and looking fixations as early as 5-months of age may serve as important early markers of later ADHD and can aid in building a more comprehensive model of ADHD from a developmental neuroscience approach.
期刊介绍:
The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.