An FE model investigating the bone-implant interface of Osseointegrated prosthetics to better understand how forces are transferred under loading

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Tiereny McGuire , Arul Ramasamy , Anthony M J Bull
{"title":"An FE model investigating the bone-implant interface of Osseointegrated prosthetics to better understand how forces are transferred under loading","authors":"Tiereny McGuire ,&nbsp;Arul Ramasamy ,&nbsp;Anthony M J Bull","doi":"10.1016/j.medengphy.2025.104304","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Osseointegrated prostheses (OIP) use is increasing for above-knee amputees who have difficulties with sockets. This study aims to simulate the bone-implant interface under loading using a 3D finite element (FE) model and quantify force distribution to produce hypotheses on bone remodelling and implant failure, informing implant and surgical design, and rehabilitation protocols.</div></div><div><h3>Methods</h3><div>Ten customised 3D femur FE models (5 female, 5 male) were generated from CT scans and bone-implant assemblies created. The bone was subdivided into seven Gruen Zones and four proximal femur regions. Boundary conditions were taken from the literature.</div></div><div><h3>Results</h3><div>The highest stresses were found in the implant (Max: 113.9 MPa), whilst highest strains were seen in the bone (Max: 4.89 %). Stress and strain were unevenly distributed, with distal regions experiencing stress shielding effects and areas around the implant tip experiencing significantly higher stresses and strains (<em>p</em> &lt; .001). Maximum stresses were higher in female bones (<em>p</em> &lt; .01), whilst shorter residuum lengths saw significantly lower stresses (<em>p</em> &lt; .05).</div></div><div><h3>Conclusion</h3><div>Sex, size and limb length are all important factors and these need to be accounted for when designing and implanting OIPs.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"137 ","pages":"Article 104304"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325000232","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Osseointegrated prostheses (OIP) use is increasing for above-knee amputees who have difficulties with sockets. This study aims to simulate the bone-implant interface under loading using a 3D finite element (FE) model and quantify force distribution to produce hypotheses on bone remodelling and implant failure, informing implant and surgical design, and rehabilitation protocols.

Methods

Ten customised 3D femur FE models (5 female, 5 male) were generated from CT scans and bone-implant assemblies created. The bone was subdivided into seven Gruen Zones and four proximal femur regions. Boundary conditions were taken from the literature.

Results

The highest stresses were found in the implant (Max: 113.9 MPa), whilst highest strains were seen in the bone (Max: 4.89 %). Stress and strain were unevenly distributed, with distal regions experiencing stress shielding effects and areas around the implant tip experiencing significantly higher stresses and strains (p < .001). Maximum stresses were higher in female bones (p < .01), whilst shorter residuum lengths saw significantly lower stresses (p < .05).

Conclusion

Sex, size and limb length are all important factors and these need to be accounted for when designing and implanting OIPs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical Engineering & Physics
Medical Engineering & Physics 工程技术-工程:生物医学
CiteScore
4.30
自引率
4.50%
发文量
172
审稿时长
3.0 months
期刊介绍: Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信