{"title":"Background-Free Mid-Infrared Photothermal Microscopy via Single-Shot Measurement of Thermal Decay","authors":"Rylie Bolarinho, Jiaze Yin, Hongli Ni, Qing Xia, Ji-Xin Cheng","doi":"10.1021/acs.analchem.4c03689","DOIUrl":null,"url":null,"abstract":"Mid-infrared photothermal (MIP) microscopy is an emerging tool for biological imaging, offering high sensitivity, subcellular resolution, and rapid image acquisition. However, the MIP signal of low concentration molecules in biological systems is often hindered or masked by background absorption, largely contributed by water, resulting from the H–O–H scissors-bending band in the fingerprint window or the bend-libration combination band in the cell-silent window. To preserve all desired signals while suppressing the background, we report a single-shot time-resolved MIP measurement that allows differentiation between the background and analyte signal based on their distinct photothermal dynamics. The results show that the thermal decay of the background is significantly longer than that of the desired intracellular signal, mainly due to the larger mass and heat capacity of water compared to those of intracellular features. Through two-component exponential fitting, we successfully differentiated and suppressed the background, while preserving the desired intracellular signal in both the fingerprint and cell-silent windows. By leveraging the thermal dynamics differences obtained from a single-shot measurement, we effectively remove the background and enhance the detection of small signals in a biological system.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"13 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c03689","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mid-infrared photothermal (MIP) microscopy is an emerging tool for biological imaging, offering high sensitivity, subcellular resolution, and rapid image acquisition. However, the MIP signal of low concentration molecules in biological systems is often hindered or masked by background absorption, largely contributed by water, resulting from the H–O–H scissors-bending band in the fingerprint window or the bend-libration combination band in the cell-silent window. To preserve all desired signals while suppressing the background, we report a single-shot time-resolved MIP measurement that allows differentiation between the background and analyte signal based on their distinct photothermal dynamics. The results show that the thermal decay of the background is significantly longer than that of the desired intracellular signal, mainly due to the larger mass and heat capacity of water compared to those of intracellular features. Through two-component exponential fitting, we successfully differentiated and suppressed the background, while preserving the desired intracellular signal in both the fingerprint and cell-silent windows. By leveraging the thermal dynamics differences obtained from a single-shot measurement, we effectively remove the background and enhance the detection of small signals in a biological system.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.