Sam Vanherle, Melanie Loix, Veronique E. Miron, Jerome J. A. Hendriks, Jeroen F. J. Bogie
{"title":"Lipid metabolism, remodelling and intercellular transfer in the CNS","authors":"Sam Vanherle, Melanie Loix, Veronique E. Miron, Jerome J. A. Hendriks, Jeroen F. J. Bogie","doi":"10.1038/s41583-025-00908-3","DOIUrl":null,"url":null,"abstract":"Lipid metabolism encompasses the catabolism and anabolism of lipids, and is fundamental for the maintenance of cellular homeostasis, particularly within the lipid-rich CNS. Increasing evidence further underscores the importance of lipid remodelling and transfer within and between glial cells and neurons as key orchestrators of CNS lipid homeostasis. In this Review, we summarize and discuss the complex landscape of processes involved in lipid metabolism, remodelling and intercellular transfer in the CNS. Highlighted are key pathways, including those mediating lipid (and lipid droplet) biogenesis and breakdown, lipid oxidation and phospholipid metabolism, as well as cell–cell lipid transfer mediated via lipoproteins, extracellular vesicles and tunnelling nanotubes. We further explore how the dysregulation of these pathways contributes to the onset and progression of neurodegenerative diseases, and examine the homeostatic and pathogenic impacts of environment, diet and lifestyle on CNS lipid metabolism. Within the CNS, lipids have vital roles in numerous cellular functions and the maintenance of lipid homeostasis is essential for brain health. Bogie and colleagues explore the mechanisms that regulate lipid biogenesis, metabolism and remodelling in the CNS, the transfer of lipids between different CNS cell types and the impact of loss of lipid homeostasis in neurodegenerative diseases.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"26 4","pages":"214-231"},"PeriodicalIF":28.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41583-025-00908-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid metabolism encompasses the catabolism and anabolism of lipids, and is fundamental for the maintenance of cellular homeostasis, particularly within the lipid-rich CNS. Increasing evidence further underscores the importance of lipid remodelling and transfer within and between glial cells and neurons as key orchestrators of CNS lipid homeostasis. In this Review, we summarize and discuss the complex landscape of processes involved in lipid metabolism, remodelling and intercellular transfer in the CNS. Highlighted are key pathways, including those mediating lipid (and lipid droplet) biogenesis and breakdown, lipid oxidation and phospholipid metabolism, as well as cell–cell lipid transfer mediated via lipoproteins, extracellular vesicles and tunnelling nanotubes. We further explore how the dysregulation of these pathways contributes to the onset and progression of neurodegenerative diseases, and examine the homeostatic and pathogenic impacts of environment, diet and lifestyle on CNS lipid metabolism. Within the CNS, lipids have vital roles in numerous cellular functions and the maintenance of lipid homeostasis is essential for brain health. Bogie and colleagues explore the mechanisms that regulate lipid biogenesis, metabolism and remodelling in the CNS, the transfer of lipids between different CNS cell types and the impact of loss of lipid homeostasis in neurodegenerative diseases.
期刊介绍:
Nature Reviews Neuroscience is a multidisciplinary journal that covers various fields within neuroscience, aiming to offer a comprehensive understanding of the structure and function of the central nervous system. Advances in molecular, developmental, and cognitive neuroscience, facilitated by powerful experimental techniques and theoretical approaches, have made enduring neurobiological questions more accessible. Nature Reviews Neuroscience serves as a reliable and accessible resource, addressing the breadth and depth of modern neuroscience. It acts as an authoritative and engaging reference for scientists interested in all aspects of neuroscience.