Fast Ergodic Search With Kernel Functions

IF 9.4 1区 计算机科学 Q1 ROBOTICS
Max Muchen Sun;Ayush Gaggar;Pete Trautman;Todd Murphey
{"title":"Fast Ergodic Search With Kernel Functions","authors":"Max Muchen Sun;Ayush Gaggar;Pete Trautman;Todd Murphey","doi":"10.1109/TRO.2025.3543298","DOIUrl":null,"url":null,"abstract":"Ergodic search enables optimal exploration of an information distribution with guaranteed asymptotic coverage of the search space. However, current methods typically have exponential computational complexity and are limited to Euclidean space. We introduce a computationally efficient ergodic search method. Our contributions are two-fold as follows: First, we develop a kernel-based ergodic metric, generalizing it from Euclidean space to Lie groups. We prove this metric is consistent with the exact ergodic metric and ensures linear complexity. Second, we derive an iterative optimal control algorithm for trajectory optimization with the kernel metric. Numerical benchmarks show our method is two orders of magnitude faster than the state-of-the-art method. Finally, we demonstrate the proposed algorithm with a peg-in-hole insertion task. We formulate the problem as a coverage task in the space of SE(3) and use a 30-s-long human demonstration as the prior distribution for ergodic coverage. Ergodicity guarantees the asymptotic solution of the peg-in-hole problem so long as the solution resides within the prior information distribution, which is seen in the 100% success rate.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"1841-1860"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891753/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ergodic search enables optimal exploration of an information distribution with guaranteed asymptotic coverage of the search space. However, current methods typically have exponential computational complexity and are limited to Euclidean space. We introduce a computationally efficient ergodic search method. Our contributions are two-fold as follows: First, we develop a kernel-based ergodic metric, generalizing it from Euclidean space to Lie groups. We prove this metric is consistent with the exact ergodic metric and ensures linear complexity. Second, we derive an iterative optimal control algorithm for trajectory optimization with the kernel metric. Numerical benchmarks show our method is two orders of magnitude faster than the state-of-the-art method. Finally, we demonstrate the proposed algorithm with a peg-in-hole insertion task. We formulate the problem as a coverage task in the space of SE(3) and use a 30-s-long human demonstration as the prior distribution for ergodic coverage. Ergodicity guarantees the asymptotic solution of the peg-in-hole problem so long as the solution resides within the prior information distribution, which is seen in the 100% success rate.
核函数快速遍历搜索
遍历搜索能够在保证搜索空间渐近覆盖的情况下对信息分布进行最优探索。然而,目前的方法通常具有指数级的计算复杂度,并且仅限于欧几里得空间。我们介绍了一种计算效率高的遍历搜索方法。我们的贡献如下:首先,我们开发了一个基于核的遍历度量,将其从欧几里得空间推广到李群。证明了该度量与精确遍历度量一致,并保证了线性复杂度。其次,推导了一种基于核度量的轨迹优化迭代最优控制算法。数值基准测试表明,我们的方法比最先进的方法快两个数量级。最后,我们以一个钉孔插入任务来演示所提出的算法。我们将该问题表述为SE(3)空间中的覆盖任务,并使用30秒长的人类演示作为遍历覆盖的先验分布。遍历性保证了孔钉问题的渐近解,只要解在先验信息分布内,即100%的成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Robotics
IEEE Transactions on Robotics 工程技术-机器人学
CiteScore
14.90
自引率
5.10%
发文量
259
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles. Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信