Selin Acar, Cigdem Guler, Mehmet Sami Guler, Muhammed Latif Bekci
{"title":"Investigation of stress distribution of different types of composite resins in mod cavities of primary molar teeth.","authors":"Selin Acar, Cigdem Guler, Mehmet Sami Guler, Muhammed Latif Bekci","doi":"10.1080/10255842.2025.2465339","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study is to examine the mechanical behavior of different types of composite resins (short fiber-reinforced composite, conventional high-fill hybrid composite and bulk-fill composite) used in the restoration of class II MOD cavities of primary molar teeth by the finite element analysis (FEA). Three three-dimensional tooth models were created in a computer environment. Model 1: tooth model without restoration (control group), Model 2: class II MOD cavity tooth model restored using composite resin (incremental technique), and Model 3: class II MOD cavity tooth model restored using composite resin (bulk technique). Subgroups were formed using the properties of different types of composite resins tested in the class II MOD cavity tooth model. To simulate the average bite force in a child with primary dentition, vertical static loading of 245 N was applied to each of the occlusal contact points of the models. The maximum von Mises stress values were calculated for the models. For all models, the von Mises stress values obtained in enamel were higher than those obtained in dentin. Similar von Mises stress values were obtained in all subgroups of Model 2. The lowest von Mises stress values transmitted to the dental tissues were obtained in Model 3.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-10"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2465339","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study is to examine the mechanical behavior of different types of composite resins (short fiber-reinforced composite, conventional high-fill hybrid composite and bulk-fill composite) used in the restoration of class II MOD cavities of primary molar teeth by the finite element analysis (FEA). Three three-dimensional tooth models were created in a computer environment. Model 1: tooth model without restoration (control group), Model 2: class II MOD cavity tooth model restored using composite resin (incremental technique), and Model 3: class II MOD cavity tooth model restored using composite resin (bulk technique). Subgroups were formed using the properties of different types of composite resins tested in the class II MOD cavity tooth model. To simulate the average bite force in a child with primary dentition, vertical static loading of 245 N was applied to each of the occlusal contact points of the models. The maximum von Mises stress values were calculated for the models. For all models, the von Mises stress values obtained in enamel were higher than those obtained in dentin. Similar von Mises stress values were obtained in all subgroups of Model 2. The lowest von Mises stress values transmitted to the dental tissues were obtained in Model 3.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.