Hierarchical emergence of opponent coding in auditory belt cortex.

IF 2.1 3区 医学 Q3 NEUROSCIENCES
Jeffrey S Johnson, Mamiko Niwa, Kevin N O'Connor, Brian J Malone, Mitchell L Sutter
{"title":"Hierarchical emergence of opponent coding in auditory belt cortex.","authors":"Jeffrey S Johnson, Mamiko Niwa, Kevin N O'Connor, Brian J Malone, Mitchell L Sutter","doi":"10.1152/jn.00519.2024","DOIUrl":null,"url":null,"abstract":"<p><p>We recorded from neurons in primary auditory cortex (A1) and middle-lateral belt area (ML) while rhesus macaques either discriminated amplitude-modulated noise (AM) from unmodulated noise or passively heard the same stimuli. We used several post-hoc pooling models to investigate the ability of auditory cortex to leverage population coding for AM detection. We find that pooled-response AM detection is better in the active condition than the passive condition, and better using rate-based coding than synchrony-based coding. Neurons can be segregated into two classes based on whether they increase (INC) or decrease (DEC) their firing rate in response to increasing modulation depth. In these samples, A1 had relatively fewer DEC neurons (26%) than ML (45%). When responses were pooled without segregating these classes, AM detection using rate-based coding was much better in A1 than in ML, but when pooling only INC neurons, AM detection in ML approached that found in A1. Pooling only DEC neurons resulted in impaired AM detection in both areas. To investigate the role of DEC neurons, we devised two pooling methods that opposed DEC and INC neurons: a direct subtractive method and a two-pool push-pull opponent method. Only the push-pull opponent method resulted in superior AM detection relative to indiscriminate pooling. In the active condition, the opponent method was superior to pooling only INC neurons during the late portion of the response in ML. These results suggest that the increasing prevalence of the DEC response type in ML can be leveraged by appropriate methods to improve AM detection.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00519.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We recorded from neurons in primary auditory cortex (A1) and middle-lateral belt area (ML) while rhesus macaques either discriminated amplitude-modulated noise (AM) from unmodulated noise or passively heard the same stimuli. We used several post-hoc pooling models to investigate the ability of auditory cortex to leverage population coding for AM detection. We find that pooled-response AM detection is better in the active condition than the passive condition, and better using rate-based coding than synchrony-based coding. Neurons can be segregated into two classes based on whether they increase (INC) or decrease (DEC) their firing rate in response to increasing modulation depth. In these samples, A1 had relatively fewer DEC neurons (26%) than ML (45%). When responses were pooled without segregating these classes, AM detection using rate-based coding was much better in A1 than in ML, but when pooling only INC neurons, AM detection in ML approached that found in A1. Pooling only DEC neurons resulted in impaired AM detection in both areas. To investigate the role of DEC neurons, we devised two pooling methods that opposed DEC and INC neurons: a direct subtractive method and a two-pool push-pull opponent method. Only the push-pull opponent method resulted in superior AM detection relative to indiscriminate pooling. In the active condition, the opponent method was superior to pooling only INC neurons during the late portion of the response in ML. These results suggest that the increasing prevalence of the DEC response type in ML can be leveraged by appropriate methods to improve AM detection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of neurophysiology
Journal of neurophysiology 医学-神经科学
CiteScore
4.80
自引率
8.00%
发文量
255
审稿时长
2-3 weeks
期刊介绍: The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信