Chengxi Li , Rui Zhang , Peiyang Li , Weiwei Shao , Yaoyao Cui
{"title":"Enhanced intravascular lithotripsy (IVL) with ultrasound-shockwave catheter","authors":"Chengxi Li , Rui Zhang , Peiyang Li , Weiwei Shao , Yaoyao Cui","doi":"10.1016/j.medengphy.2025.104306","DOIUrl":null,"url":null,"abstract":"<div><div>Intravascular shockwave lithotripsy (IVL) is an effective treatment for vascular calcification. Previous studies suggest that ultrasound can enhance the efficiency of extracorporeal shockwave lithotripsy (ESWL) by mitigating the bubble shielding effect. We developed a novel ultrasound-shockwave catheter that combines flowing liquid and ultrasound to suppress bubble shielding and enhance lithotripsy efficiency. Experimental results confirm the bubble shielding effect in IVL, which can be mitigated by flowing liquid or ultrasound. Fracture experiments using Ultracal-30 as phantoms demonstrate the ultrasound emitted after 10 ms of shockwave generation and combines with bubbles can enhance lithotripsy efficiency. Specifically, the addition of ultrasound and bubbles reduced the mass percentage of fragments larger than 4.5 mm by 38.56 % compared to the control. Spectrum analysis of ultrasound reveals cavitation's role in improving lithotripsy efficiency. In summary, while bubbles initially attenuate shockwave intensity and reduce lithotripsy efficiency, their combination with ultrasound-induced cavitation enhances treatment outcomes.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"137 ","pages":"Article 104306"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325000256","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Intravascular shockwave lithotripsy (IVL) is an effective treatment for vascular calcification. Previous studies suggest that ultrasound can enhance the efficiency of extracorporeal shockwave lithotripsy (ESWL) by mitigating the bubble shielding effect. We developed a novel ultrasound-shockwave catheter that combines flowing liquid and ultrasound to suppress bubble shielding and enhance lithotripsy efficiency. Experimental results confirm the bubble shielding effect in IVL, which can be mitigated by flowing liquid or ultrasound. Fracture experiments using Ultracal-30 as phantoms demonstrate the ultrasound emitted after 10 ms of shockwave generation and combines with bubbles can enhance lithotripsy efficiency. Specifically, the addition of ultrasound and bubbles reduced the mass percentage of fragments larger than 4.5 mm by 38.56 % compared to the control. Spectrum analysis of ultrasound reveals cavitation's role in improving lithotripsy efficiency. In summary, while bubbles initially attenuate shockwave intensity and reduce lithotripsy efficiency, their combination with ultrasound-induced cavitation enhances treatment outcomes.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.