{"title":"Bias, machine learning, and conceptual engineering","authors":"Rachel Etta Rudolph, Elay Shech, Michael Tamir","doi":"10.1007/s11098-024-02273-w","DOIUrl":null,"url":null,"abstract":"<p>Large language models (LLMs) such as OpenAI’s ChatGPT reflect, and can potentially perpetuate, social biases in language use. Conceptual engineering aims to revise our concepts to eliminate such bias. We show how machine learning and conceptual engineering can be fruitfully brought together to offer new insights to both conceptual engineers and LLM designers. Specifically, we suggest that LLMs can be used to detect and expose bias in the prototypes associated with concepts, and that LLM de-biasing can serve conceptual engineering projects that aim to revise such conceptual prototypes. At present, these de-biasing techniques primarily involve approaches requiring bespoke interventions based on choices of the algorithm’s designers. Thus, conceptual engineering through de-biasing will include making choices about what kind of normative training an LLM should receive, especially with respect to different notions of bias. This offers a new perspective on what conceptual engineering involves and how it can be implemented. And our conceptual engineering approach also offers insight, to those engaged in LLM de-biasing, into the normative distinctions that are needed for that work.</p>","PeriodicalId":48305,"journal":{"name":"PHILOSOPHICAL STUDIES","volume":"64 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHILOSOPHICAL STUDIES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11098-024-02273-w","RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Large language models (LLMs) such as OpenAI’s ChatGPT reflect, and can potentially perpetuate, social biases in language use. Conceptual engineering aims to revise our concepts to eliminate such bias. We show how machine learning and conceptual engineering can be fruitfully brought together to offer new insights to both conceptual engineers and LLM designers. Specifically, we suggest that LLMs can be used to detect and expose bias in the prototypes associated with concepts, and that LLM de-biasing can serve conceptual engineering projects that aim to revise such conceptual prototypes. At present, these de-biasing techniques primarily involve approaches requiring bespoke interventions based on choices of the algorithm’s designers. Thus, conceptual engineering through de-biasing will include making choices about what kind of normative training an LLM should receive, especially with respect to different notions of bias. This offers a new perspective on what conceptual engineering involves and how it can be implemented. And our conceptual engineering approach also offers insight, to those engaged in LLM de-biasing, into the normative distinctions that are needed for that work.
期刊介绍:
Philosophical Studies was founded in 1950 by Herbert Feigl and Wilfrid Sellars to provide a periodical dedicated to work in analytic philosophy. The journal remains devoted to the publication of papers in exclusively analytic philosophy. Papers applying formal techniques to philosophical problems are welcome. The principal aim is to publish articles that are models of clarity and precision in dealing with significant philosophical issues. It is intended that readers of the journal will be kept abreast of the central issues and problems of contemporary analytic philosophy.
Double-blind review procedure
The journal follows a double-blind reviewing procedure. Authors are therefore requested to place their name and affiliation on a separate page. Self-identifying citations and references in the article text should either be avoided or left blank when manuscripts are first submitted. Authors are responsible for reinserting self-identifying citations and references when manuscripts are prepared for final submission.