Functional Aptamers In Vitro Evolution for Protein–Protein Interaction Blockage

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Tongxuan Wei, Qinguo Liu, Jun Li, Song Song, Liqin Zhang
{"title":"Functional Aptamers In Vitro Evolution for Protein–Protein Interaction Blockage","authors":"Tongxuan Wei, Qinguo Liu, Jun Li, Song Song, Liqin Zhang","doi":"10.1021/acs.analchem.4c04609","DOIUrl":null,"url":null,"abstract":"As aptamer development progresses, their applications have expanded significantly beyond high affinity to include functional capabilities. Currently, the identification of functional aptamers relies on traditional SELEX techniques, followed by functional validation and computer-assisted redesign of high-affinity aptamers. However, high affinity does not guarantee optimal functionality, making the search for functional aptamers from binding pools time-consuming and labor-intensive. Addressing this challenge, we introduce functional aptamers <i>in vitro</i> evolution (FAIVE), a novel screening method that links sequence functionality to fluorescence intensity. We demonstrated the effectiveness of FAIVE by obtaining modified DNA aptamers capable of disrupting the interaction between the SARS-CoV-2 spike receptor-binding domain (RBD) and hACE2, targeting protein–protein interaction inhibition. Furthermore, we investigated the criteria for validating the quality of the bead library generated for selection by modeling the emulsion PCR process, providing theoretical insights for future applications. The concept of incorporating fluorescent signal reporting of aptamer functionality into the aptamer selection process holds the potential to facilitate the identification of aptamers with diverse functionalities and is readily adaptable to various research contexts.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"13 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04609","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As aptamer development progresses, their applications have expanded significantly beyond high affinity to include functional capabilities. Currently, the identification of functional aptamers relies on traditional SELEX techniques, followed by functional validation and computer-assisted redesign of high-affinity aptamers. However, high affinity does not guarantee optimal functionality, making the search for functional aptamers from binding pools time-consuming and labor-intensive. Addressing this challenge, we introduce functional aptamers in vitro evolution (FAIVE), a novel screening method that links sequence functionality to fluorescence intensity. We demonstrated the effectiveness of FAIVE by obtaining modified DNA aptamers capable of disrupting the interaction between the SARS-CoV-2 spike receptor-binding domain (RBD) and hACE2, targeting protein–protein interaction inhibition. Furthermore, we investigated the criteria for validating the quality of the bead library generated for selection by modeling the emulsion PCR process, providing theoretical insights for future applications. The concept of incorporating fluorescent signal reporting of aptamer functionality into the aptamer selection process holds the potential to facilitate the identification of aptamers with diverse functionalities and is readily adaptable to various research contexts.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信