Direct calculation of effective mobile ion concentration in lithium superionic conductors

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Bowei Pu, Zheyi Zou, Jinping Liu, Bing He, Dezhi Chen, Da Wang, Yue Liu, Maxim Avdeev, Siqi Shi
{"title":"Direct calculation of effective mobile ion concentration in lithium superionic conductors","authors":"Bowei Pu, Zheyi Zou, Jinping Liu, Bing He, Dezhi Chen, Da Wang, Yue Liu, Maxim Avdeev, Siqi Shi","doi":"10.1038/s41524-025-01516-6","DOIUrl":null,"url":null,"abstract":"<p>In the realm of lithium superionic conductors, pursuing higher ionic conductivity is imperative, with the variance in lithium-ion concentration playing a determining role. Due to the permanent and temporary site-blocking effects, especially at non-dilute concentrations, not all Li-ions contribute to ionic conductivity. Here, we propose a strategy to directly calculate effective mobile ion concentration in which multiple-ion correlated migration is considered in the percolation analysis with the input of Li-ion distributions and hopping behavior based on kinetic Monte Carlo simulation, termed P-KMC. We provide examples of two representative lithium superionic conductors, cubic garnet-type Li<sub><i>x</i></sub><i>A</i><sub>3</sub><i>B</i><sub>2</sub>O<sub>12</sub> (0 ≤ <i>x</i> ≤ 9; <i>A</i> and <i>B</i> represent different cations) and perovskite-type Li<sub><i>x</i></sub>La<sub>2/3−<i>x</i>/3</sub>TiO<sub>3</sub> (0 ≤ <i>x</i> ≤ 0.5), to demonstrate the direct dependence of the ionic conductivity on the effective mobile ion concentration. This methodology provides a robust tool to identify the optimal compositions for the highest ionic conductivity in superionic conductors.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"1 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01516-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of lithium superionic conductors, pursuing higher ionic conductivity is imperative, with the variance in lithium-ion concentration playing a determining role. Due to the permanent and temporary site-blocking effects, especially at non-dilute concentrations, not all Li-ions contribute to ionic conductivity. Here, we propose a strategy to directly calculate effective mobile ion concentration in which multiple-ion correlated migration is considered in the percolation analysis with the input of Li-ion distributions and hopping behavior based on kinetic Monte Carlo simulation, termed P-KMC. We provide examples of two representative lithium superionic conductors, cubic garnet-type LixA3B2O12 (0 ≤ x ≤ 9; A and B represent different cations) and perovskite-type LixLa2/3−x/3TiO3 (0 ≤ x ≤ 0.5), to demonstrate the direct dependence of the ionic conductivity on the effective mobile ion concentration. This methodology provides a robust tool to identify the optimal compositions for the highest ionic conductivity in superionic conductors.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信