Nicotinamide riboside alleviates sweeteners-induced brain and cognitive impairments in immature mice.

IF 5.1 1区 农林科学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Food & Function Pub Date : 2025-02-17 DOI:10.1039/d4fo05553e
Yushan Jiang, Huaqi Zhang, Jing Shi, Tianhu Shan, Man Liu, Peng Wang, Xi Liang, Hui Liang
{"title":"Nicotinamide riboside alleviates sweeteners-induced brain and cognitive impairments in immature mice.","authors":"Yushan Jiang, Huaqi Zhang, Jing Shi, Tianhu Shan, Man Liu, Peng Wang, Xi Liang, Hui Liang","doi":"10.1039/d4fo05553e","DOIUrl":null,"url":null,"abstract":"<p><p>The consumption of sweeteners is high around the world. Sweet beverages are one of the most important and popular sources of sweeteners. Previous studies have reported that excessive sweeteners might cause health hazards, including cognitive impairment. Nicotinamide riboside (NR), a precursor of NAD<sup>+</sup>, has been found to alleviate several cognitive impairments. However, the protective effects of NR against sweetener-induced cognitive impairment remain unclear. Hence, we evaluated the effects of sweeteners and NR (400 mg kg<sup>-1</sup> d<sup>-1</sup>) on the brain and cognition of mice by simulating an extreme lifestyle of completely replacing water with sugar-sweetened beverage (simulated with 10% sucrose solution) or sugar-free sweet beverage (simulated with 0.05% aspartame solution) from weaning to adulthood. The results revealed that continuous exposure to sucrose or aspartame for eight weeks did not significantly cause differences in body weight but significantly induced cognitive impairments, including anxiety- and depressive-like behaviours, impairments in learning, memory and sociability. Moreover, sucrose or aspartame exposure induced neuronal injury, reduction of Nissl bodies, overactivation of the TLR4/NF-κB/NLRP3/ASC/Caspase-1 pathway and increased downstream inflammatory cytokines in mouse hippocampus, and also induced an imbalance of oxidative stress, apoptosis and autophagy, large consumptions of intracellular antioxidant factors, and overactivation of the PI3K/Akt/FOXO1 and PI3K/Akt/mTOR pathways in mouse brain. NR treatment increased NAD<sup>+</sup> in the brain, and prevented and alleviated these impairments effectively. In summary, we found that NR supplementation protected against cognitive impairment caused by sucrose or aspartame in immature mice, which might be related to increased brain NAD<sup>+</sup> level, relieved neuroinflammation and pyroptosis in the hippocampus, and maintained a balance of oxidative stress, apoptosis and autophagy in the brain.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo05553e","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The consumption of sweeteners is high around the world. Sweet beverages are one of the most important and popular sources of sweeteners. Previous studies have reported that excessive sweeteners might cause health hazards, including cognitive impairment. Nicotinamide riboside (NR), a precursor of NAD+, has been found to alleviate several cognitive impairments. However, the protective effects of NR against sweetener-induced cognitive impairment remain unclear. Hence, we evaluated the effects of sweeteners and NR (400 mg kg-1 d-1) on the brain and cognition of mice by simulating an extreme lifestyle of completely replacing water with sugar-sweetened beverage (simulated with 10% sucrose solution) or sugar-free sweet beverage (simulated with 0.05% aspartame solution) from weaning to adulthood. The results revealed that continuous exposure to sucrose or aspartame for eight weeks did not significantly cause differences in body weight but significantly induced cognitive impairments, including anxiety- and depressive-like behaviours, impairments in learning, memory and sociability. Moreover, sucrose or aspartame exposure induced neuronal injury, reduction of Nissl bodies, overactivation of the TLR4/NF-κB/NLRP3/ASC/Caspase-1 pathway and increased downstream inflammatory cytokines in mouse hippocampus, and also induced an imbalance of oxidative stress, apoptosis and autophagy, large consumptions of intracellular antioxidant factors, and overactivation of the PI3K/Akt/FOXO1 and PI3K/Akt/mTOR pathways in mouse brain. NR treatment increased NAD+ in the brain, and prevented and alleviated these impairments effectively. In summary, we found that NR supplementation protected against cognitive impairment caused by sucrose or aspartame in immature mice, which might be related to increased brain NAD+ level, relieved neuroinflammation and pyroptosis in the hippocampus, and maintained a balance of oxidative stress, apoptosis and autophagy in the brain.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food & Function
Food & Function BIOCHEMISTRY & MOLECULAR BIOLOGY-FOOD SCIENCE & TECHNOLOGY
CiteScore
10.10
自引率
6.60%
发文量
957
审稿时长
1.8 months
期刊介绍: Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信