{"title":"Autoencoder reconstruction residual-Wasserstein distance based in-situ calibration for indoor environment spatial expansion virtual sensors","authors":"Hakjong Shin, Seng-Kyoun Jo, Won-Kyu Choi","doi":"10.1016/j.enbuild.2025.115452","DOIUrl":null,"url":null,"abstract":"<div><div>Increasing reliance on digital twin technology for managing indoor environments necessitates the development of spatial expansion virtual sensors (SEVS). However, in practical applications, SEVS performance often deteriorates due to shifts in data distribution and environmental conditions, presenting challenges for consistent reliability. Most existing SEVS research has primarily focused on initial model development, with limited consideration to in-situ calibration strategies. This study introduces an autoencoder reconstruction residual-Wasserstein distance (AR-WD)-based error estimation model, designed for spatial expansion virtual sensors with the primary objective of enhancing their performance in practical applications. The proposed model utilizes residuals from autoencoders and Wasserstein features, which can be derived without additional sensor installations, for real-time calibration. A comprehensive evaluation was conducted using temperature data from a pigsty, where the AR-WD model demonstrated robust performance across various machine learning algorithms, particularly with random forest and XGBoost, showing high predictive accuracy with a mean absolute error as low as 0.086. These findings suggest that the integration of AR-WD features significantly enhances the reliability and accuracy of virtual sensors. In addition, the AR-WD model leverages the unique characteristics of SEVS to enable real-time error estimation based solely on input data variations, thereby addressing common limitations of non-intrusive calibration methods. This research not only advances the field of virtual sensor development but also provides critical insights for optimizing sensor systems in complex indoor settings.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"333 ","pages":"Article 115452"},"PeriodicalIF":6.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825001823","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing reliance on digital twin technology for managing indoor environments necessitates the development of spatial expansion virtual sensors (SEVS). However, in practical applications, SEVS performance often deteriorates due to shifts in data distribution and environmental conditions, presenting challenges for consistent reliability. Most existing SEVS research has primarily focused on initial model development, with limited consideration to in-situ calibration strategies. This study introduces an autoencoder reconstruction residual-Wasserstein distance (AR-WD)-based error estimation model, designed for spatial expansion virtual sensors with the primary objective of enhancing their performance in practical applications. The proposed model utilizes residuals from autoencoders and Wasserstein features, which can be derived without additional sensor installations, for real-time calibration. A comprehensive evaluation was conducted using temperature data from a pigsty, where the AR-WD model demonstrated robust performance across various machine learning algorithms, particularly with random forest and XGBoost, showing high predictive accuracy with a mean absolute error as low as 0.086. These findings suggest that the integration of AR-WD features significantly enhances the reliability and accuracy of virtual sensors. In addition, the AR-WD model leverages the unique characteristics of SEVS to enable real-time error estimation based solely on input data variations, thereby addressing common limitations of non-intrusive calibration methods. This research not only advances the field of virtual sensor development but also provides critical insights for optimizing sensor systems in complex indoor settings.
期刊介绍:
An international journal devoted to investigations of energy use and efficiency in buildings
Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.