ER-detect: A pipeline for robust detection of early evoked responses in BIDS-iEEG electrical stimulation data

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Max A. van den Boom , Nicholas M. Gregg , Gabriela Ojeda Valencia , Brian N. Lundstrom , Kai J. Miller , Dorien van Blooijs , Geertjan J.M. Huiskamp , Frans S.S. Leijten , Gregory A. Worrell , Dora Hermes
{"title":"ER-detect: A pipeline for robust detection of early evoked responses in BIDS-iEEG electrical stimulation data","authors":"Max A. van den Boom ,&nbsp;Nicholas M. Gregg ,&nbsp;Gabriela Ojeda Valencia ,&nbsp;Brian N. Lundstrom ,&nbsp;Kai J. Miller ,&nbsp;Dorien van Blooijs ,&nbsp;Geertjan J.M. Huiskamp ,&nbsp;Frans S.S. Leijten ,&nbsp;Gregory A. Worrell ,&nbsp;Dora Hermes","doi":"10.1016/j.jneumeth.2025.110389","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Human brain connectivity can be measured in different ways. Intracranial EEG (iEEG) measurements during single pulse electrical stimulation provide a unique way to assess the spread of electrical information with millisecond precision. However, the methods used for the detection of responses in cortico-cortical evoked potential (CCEP) data vary across studies, from visual inspection with manual annotation to a variety of automated methods.</div></div><div><h3>New method</h3><div>To provide a robust workflow to process CCEP data and detect early evoked responses in a fully automated and reproducible fashion, we developed the Early Response (ER)-detect toolbox. ER-detect is an open-source Python package and Docker application to preprocess BIDS structured iEEG data and detect early evoked CCEP responses. ER-detect can use three early response detection methods, which were validated against 14 manually annotated CCEP datasets from two different clinical sites by four independent raters.</div></div><div><h3>Results and comparison with existing methods</h3><div>ER-detect’s automated detection performed on par with the inter-rater reliability (Cohen’s Kappa of ∼0.6). Moreover, ER-detect was optimized for processing large CCEP datasets, to be used in conjunction with other connectomic investigations.</div></div><div><h3>Conclusion</h3><div>ER-detect provides a highly efficient standardized workflow such that iEEG-BIDS data can be processed in a consistent manner and enhance the reproducibility of CCEP based connectivity results for both research and clinical purposes.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"418 ","pages":"Article 110389"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027025000305","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Human brain connectivity can be measured in different ways. Intracranial EEG (iEEG) measurements during single pulse electrical stimulation provide a unique way to assess the spread of electrical information with millisecond precision. However, the methods used for the detection of responses in cortico-cortical evoked potential (CCEP) data vary across studies, from visual inspection with manual annotation to a variety of automated methods.

New method

To provide a robust workflow to process CCEP data and detect early evoked responses in a fully automated and reproducible fashion, we developed the Early Response (ER)-detect toolbox. ER-detect is an open-source Python package and Docker application to preprocess BIDS structured iEEG data and detect early evoked CCEP responses. ER-detect can use three early response detection methods, which were validated against 14 manually annotated CCEP datasets from two different clinical sites by four independent raters.

Results and comparison with existing methods

ER-detect’s automated detection performed on par with the inter-rater reliability (Cohen’s Kappa of ∼0.6). Moreover, ER-detect was optimized for processing large CCEP datasets, to be used in conjunction with other connectomic investigations.

Conclusion

ER-detect provides a highly efficient standardized workflow such that iEEG-BIDS data can be processed in a consistent manner and enhance the reproducibility of CCEP based connectivity results for both research and clinical purposes.
ER-detect:对BIDS-iEEG电刺激数据的早期诱发反应进行鲁棒检测的管道。
背景:人类大脑连接可以用不同的方式来测量。单脉冲电刺激期间的颅内脑电图(iEEG)测量提供了一种独特的方法,以毫秒精度评估电信息的传播。然而,用于检测皮质-皮质诱发电位(CCEP)数据反应的方法因研究而异,从手动注释的目视检查到各种自动化方法。新方法:为了提供一个强大的工作流程来处理CCEP数据,并以完全自动化和可重复的方式检测早期诱发反应,我们开发了早期反应(ER)检测工具箱。ER-detect是一个开源Python包和Docker应用程序,用于预处理BIDS结构化iEEG数据并检测早期诱发的CCEP响应。ER-detect可以使用三种早期反应检测方法,这些方法由四位独立的评分者根据来自两个不同临床站点的14个手动注释的CCEP数据集进行验证。结果:与现有方法比较:ER-detect的自动检测效果与评分者间信度相当(Cohen’s Kappa为~0.6)。此外,ER-detect被优化用于处理大型CCEP数据集,与其他连接组研究一起使用。结论:er检测提供了一种高效的标准化工作流程,使eeg - bids数据能够以一致的方式进行处理,并提高了基于CCEP的连通性结果的可重复性,用于研究和临床目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信