Konstantinos Tsikonofilos, Arvind Kumar, Konstantinos Ampatzis, Douglas D Garrett, Kristoffer N T Månsson
{"title":"THE PROMISE OF INVESTIGATING NEURAL VARIABILITY IN PSYCHIATRIC DISORDERS.","authors":"Konstantinos Tsikonofilos, Arvind Kumar, Konstantinos Ampatzis, Douglas D Garrett, Kristoffer N T Månsson","doi":"10.1016/j.biopsych.2025.02.004","DOIUrl":null,"url":null,"abstract":"<p><p>The synergy of psychiatry and neuroscience has recently sought to identify biomarkers that can diagnose mental health disorders, predict their progression, and forecast treatment efficacy. However, biomarkers have achieved limited success to date, potentially due to a narrow focus on specific aspects of brain signals. This highlights a critical need for methodologies that can fully exploit the potential of neuroscience to transform psychiatric practice. In recent years, there is emerging evidence of the ubiquity and importance of moment-to-moment neural variability for brain function. Single-neuron recordings and computational models have demonstrated the significance of variability even at the microscopic level. Concurrently, studies involving healthy humans using neuroimaging recording techniques have strongly indicated that neural variability, once dismissed as undesirable noise, is an important substrate for cognition. Given the cognitive disruption in several psychiatric disorders, neural variability is a promising biomarker in this context and careful consideration of design choices is necessary to advance the field. This review provides an overview of the significance and substrates of neural variability across different recording modalities and spatial scales. We also review the existing evidence supporting its relevance in the study of psychiatric disorders. Finally, we advocate for future research to investigate neural variability within disorder-relevant, task-based paradigms and longitudinal designs. Supported by computational models of brain activity, this framework holds the potential for advancing precision psychiatry in a powerful and experimentally feasible manner.</p>","PeriodicalId":8918,"journal":{"name":"Biological Psychiatry","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.biopsych.2025.02.004","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The synergy of psychiatry and neuroscience has recently sought to identify biomarkers that can diagnose mental health disorders, predict their progression, and forecast treatment efficacy. However, biomarkers have achieved limited success to date, potentially due to a narrow focus on specific aspects of brain signals. This highlights a critical need for methodologies that can fully exploit the potential of neuroscience to transform psychiatric practice. In recent years, there is emerging evidence of the ubiquity and importance of moment-to-moment neural variability for brain function. Single-neuron recordings and computational models have demonstrated the significance of variability even at the microscopic level. Concurrently, studies involving healthy humans using neuroimaging recording techniques have strongly indicated that neural variability, once dismissed as undesirable noise, is an important substrate for cognition. Given the cognitive disruption in several psychiatric disorders, neural variability is a promising biomarker in this context and careful consideration of design choices is necessary to advance the field. This review provides an overview of the significance and substrates of neural variability across different recording modalities and spatial scales. We also review the existing evidence supporting its relevance in the study of psychiatric disorders. Finally, we advocate for future research to investigate neural variability within disorder-relevant, task-based paradigms and longitudinal designs. Supported by computational models of brain activity, this framework holds the potential for advancing precision psychiatry in a powerful and experimentally feasible manner.
期刊介绍:
Biological Psychiatry is an official journal of the Society of Biological Psychiatry and was established in 1969. It is the first journal in the Biological Psychiatry family, which also includes Biological Psychiatry: Cognitive Neuroscience and Neuroimaging and Biological Psychiatry: Global Open Science. The Society's main goal is to promote excellence in scientific research and education in the fields related to the nature, causes, mechanisms, and treatments of disorders pertaining to thought, emotion, and behavior. To fulfill this mission, Biological Psychiatry publishes peer-reviewed, rapid-publication articles that present new findings from original basic, translational, and clinical mechanistic research, ultimately advancing our understanding of psychiatric disorders and their treatment. The journal also encourages the submission of reviews and commentaries on current research and topics of interest.