{"title":"Nutrient removal performance and microbial composition analysis in hybrid membrane bioreactor for municipal wastewater treatment.","authors":"Kamran Tari, Mohammad Reza Samarghandi, Reza Shokoohi, Ghorban Asgari, Eskandar Poorasgari, Pezhman Karami, Saeid Afshar","doi":"10.1007/s00449-025-03135-3","DOIUrl":null,"url":null,"abstract":"<p><p>The removal of nutrients from wastewater to reduce the toxicity of these compounds to the environment requires more space in wastewater treatment plants to establish anaerobic, anoxic and aerobic treatment stages. To address this limitation, researchers have developed practical, intensive hybrid treatment systems that enhance nutrient removal performance while requiring less space. However, the implementation of hybrid systems within a reactor introduces the interaction between the attached and suspended growth that can influence the microbial community structure and the performance of the system, so it is crucial to understand the composition of the microbial communities involved in hybrid growth to optimize control strategies in these systems. This study investigated the microbial community structure of the integrated moving bed membrane bioreactor (IMBMBR) system and its impact on nutrient removal in municipal wastewater. The findings demonstrated that the effluent quality was improved with the IMBMBR. The efficiency of removing COD, BOD<sub>5</sub>, <math> <mrow><msubsup><mtext>NH</mtext> <mrow><mn>4</mn></mrow> <mo>+</mo></msubsup> <mtext>-N</mtext></mrow> </math> and <math> <mrow><msubsup><mtext>PO</mtext> <mrow><mn>4</mn></mrow> <mrow><mn>3</mn> <mo>-</mo></mrow> </msubsup> <mtext>-P</mtext></mrow> </math> in the IMBMBR were 91 ± 4.0%, 95 ± 4.0%, 99 ± 0.2% and 24 ± 3.0%, respectively. The IMBMBR had better nitrite oxidation and complete nitrification by increasing the diversity and abundance of effective bacteria. The abundance of Proteobacteria, Bacteroidetes and Nitrospira was enhanced in IMBMBR. Coexistence of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in IMBMBR led to increased nutrient removal. The study results suggest that IMBMBR can be an effective process for nutrient removal, achieving quality standards that comply with legal requirements for wastewater in municipal and industries with limited space for establishing treatment facilities. Additionally, this process can be quickly implemented as an upgrade to existing wastewater treatment plants, avoiding the need to develop an entirely new system.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03135-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The removal of nutrients from wastewater to reduce the toxicity of these compounds to the environment requires more space in wastewater treatment plants to establish anaerobic, anoxic and aerobic treatment stages. To address this limitation, researchers have developed practical, intensive hybrid treatment systems that enhance nutrient removal performance while requiring less space. However, the implementation of hybrid systems within a reactor introduces the interaction between the attached and suspended growth that can influence the microbial community structure and the performance of the system, so it is crucial to understand the composition of the microbial communities involved in hybrid growth to optimize control strategies in these systems. This study investigated the microbial community structure of the integrated moving bed membrane bioreactor (IMBMBR) system and its impact on nutrient removal in municipal wastewater. The findings demonstrated that the effluent quality was improved with the IMBMBR. The efficiency of removing COD, BOD5, and in the IMBMBR were 91 ± 4.0%, 95 ± 4.0%, 99 ± 0.2% and 24 ± 3.0%, respectively. The IMBMBR had better nitrite oxidation and complete nitrification by increasing the diversity and abundance of effective bacteria. The abundance of Proteobacteria, Bacteroidetes and Nitrospira was enhanced in IMBMBR. Coexistence of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in IMBMBR led to increased nutrient removal. The study results suggest that IMBMBR can be an effective process for nutrient removal, achieving quality standards that comply with legal requirements for wastewater in municipal and industries with limited space for establishing treatment facilities. Additionally, this process can be quickly implemented as an upgrade to existing wastewater treatment plants, avoiding the need to develop an entirely new system.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.