Psychological and physiological computing based on multi-dimensional foot information

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shengyang Li, Huilin Yao, Ruotian Peng, Yuanjun Ma, Bowen Zhang, Zhiyao Zhao, Jincheng Zhang, Siyuan Chen, Shibin Wu, Lin Shu
{"title":"Psychological and physiological computing based on multi-dimensional foot information","authors":"Shengyang Li,&nbsp;Huilin Yao,&nbsp;Ruotian Peng,&nbsp;Yuanjun Ma,&nbsp;Bowen Zhang,&nbsp;Zhiyao Zhao,&nbsp;Jincheng Zhang,&nbsp;Siyuan Chen,&nbsp;Shibin Wu,&nbsp;Lin Shu","doi":"10.1007/s10462-024-11087-5","DOIUrl":null,"url":null,"abstract":"<div><p>As the population ages, utilizing foot information to continuously monitor the physiological and psychological health status of the elderly is emerging as a pivotal tool for meeting this crucial societal demand. However, few reviews explored how multi-dimensional foot data has been integrated into physiological and psychological computing. This review is essential as it fills a critical knowledge gap in understanding the connections between physiological and psychological disorders and various components of foot information. To identify relevant literature, a thorough search was conducted across IEEE, DBLP, Elsevier, Springer, Google Scholar, and PubMed, initially yielding 2386 publications. After multiple rounds of systematic filtering, 404 publications were selected for in-depth analysis. This review examines (1) the mechanisms linking foot information to human physiological and psychological conditions, (2) the monitoring devices that collect diverse foot-based data, (3) the datasets correlating diseases with multiple foot data, (4) the prevalent feature engineering of different foot data, and (5) the cutting-edge machine and deep learning algorithms for diseases analysis. It also provides insights into future developments in foot information health monitoring for psychological and physiological computing.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 5","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-11087-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-11087-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

As the population ages, utilizing foot information to continuously monitor the physiological and psychological health status of the elderly is emerging as a pivotal tool for meeting this crucial societal demand. However, few reviews explored how multi-dimensional foot data has been integrated into physiological and psychological computing. This review is essential as it fills a critical knowledge gap in understanding the connections between physiological and psychological disorders and various components of foot information. To identify relevant literature, a thorough search was conducted across IEEE, DBLP, Elsevier, Springer, Google Scholar, and PubMed, initially yielding 2386 publications. After multiple rounds of systematic filtering, 404 publications were selected for in-depth analysis. This review examines (1) the mechanisms linking foot information to human physiological and psychological conditions, (2) the monitoring devices that collect diverse foot-based data, (3) the datasets correlating diseases with multiple foot data, (4) the prevalent feature engineering of different foot data, and (5) the cutting-edge machine and deep learning algorithms for diseases analysis. It also provides insights into future developments in foot information health monitoring for psychological and physiological computing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信