On enhancing the performance of modified bitumen through the synergistic mechanism of polyurethane and waste rubber powder

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Zehua Zhu, Peng Xiao, Aihong Kang, Keke Lou, Changjiang Kou, Yujuan Zhang
{"title":"On enhancing the performance of modified bitumen through the synergistic mechanism of polyurethane and waste rubber powder","authors":"Zehua Zhu,&nbsp;Peng Xiao,&nbsp;Aihong Kang,&nbsp;Keke Lou,&nbsp;Changjiang Kou,&nbsp;Yujuan Zhang","doi":"10.1016/j.enbuild.2025.115435","DOIUrl":null,"url":null,"abstract":"<div><div>Despite advancements in bitumen technology, traditional bitumen often fails to meet the increasing demands for durability and environmental sustainability. In this study, thermoplastic polyurethane (TPU) and waste rubber powder (WRP) were utilized to prepare a composite-modified bitumen to overcome the performance limitations of conventional bitumen. The performance of this composite-modified bitumen was comprehensively evaluated through rheological tests, thermal stability tests, infrared spectroscopy, and micro-morphological analysis. Molecular dynamics simulations revealed the molecular-level interactions between TPU and WRP, further explaining the enhancement mechanisms. The study showed that WRP undergoes a crosslinking reaction at high temperatures, enhancing the thermal stability of the composite-modified bitumen, while the elasticity of TPU promotes a microlevel interlocking mechanism that improves mechanical properties and deformation resistance. The optimal mixing ratios of TPU to WRP were determined to be 8 % and 10 %. The three-dimensional network structure formed by the long polymer chains of TPU as the main framework, interspersed with WRP, effectively optimizes the temperature stability and elastic recovery of the bitumen. This study not only fills a critical gap in research on the synergistic effects of TPU and WRP but also provides a theoretical and experimental foundation for developing low-noise, durable bitumen pavements.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"332 ","pages":"Article 115435"},"PeriodicalIF":6.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825001653","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite advancements in bitumen technology, traditional bitumen often fails to meet the increasing demands for durability and environmental sustainability. In this study, thermoplastic polyurethane (TPU) and waste rubber powder (WRP) were utilized to prepare a composite-modified bitumen to overcome the performance limitations of conventional bitumen. The performance of this composite-modified bitumen was comprehensively evaluated through rheological tests, thermal stability tests, infrared spectroscopy, and micro-morphological analysis. Molecular dynamics simulations revealed the molecular-level interactions between TPU and WRP, further explaining the enhancement mechanisms. The study showed that WRP undergoes a crosslinking reaction at high temperatures, enhancing the thermal stability of the composite-modified bitumen, while the elasticity of TPU promotes a microlevel interlocking mechanism that improves mechanical properties and deformation resistance. The optimal mixing ratios of TPU to WRP were determined to be 8 % and 10 %. The three-dimensional network structure formed by the long polymer chains of TPU as the main framework, interspersed with WRP, effectively optimizes the temperature stability and elastic recovery of the bitumen. This study not only fills a critical gap in research on the synergistic effects of TPU and WRP but also provides a theoretical and experimental foundation for developing low-noise, durable bitumen pavements.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信