Two-stage optimization of computation offloading for ICN-assisted mobile edge computing in 6G network

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jiajian Li , Yanjun Shi , Yu Yang
{"title":"Two-stage optimization of computation offloading for ICN-assisted mobile edge computing in 6G network","authors":"Jiajian Li ,&nbsp;Yanjun Shi ,&nbsp;Yu Yang","doi":"10.1016/j.icte.2024.09.006","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates QoS-aware computation offloading issues for mobile edge computing in the 6G network. To minimize the end-to-end delay, we harness the Information-Centric Network (ICN) to ensure resource-constrained mobile user offloading computation-sensitive tasks in a distributed manner. Then, a two-stage approach based on a Multi-Agent Reinforcement Learning (MARL) algorithm entwined with optimization-embedding offloading ratio is proposed to enhance server selection for load balancing. Numeral results demonstrate that, with reference to a workshop-scale scenario, the proposed method can achieve outperformed performance in reducing delay and balancing loads on edge servers than the other four baseline schemes.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 1","pages":"Pages 26-33"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524001097","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates QoS-aware computation offloading issues for mobile edge computing in the 6G network. To minimize the end-to-end delay, we harness the Information-Centric Network (ICN) to ensure resource-constrained mobile user offloading computation-sensitive tasks in a distributed manner. Then, a two-stage approach based on a Multi-Agent Reinforcement Learning (MARL) algorithm entwined with optimization-embedding offloading ratio is proposed to enhance server selection for load balancing. Numeral results demonstrate that, with reference to a workshop-scale scenario, the proposed method can achieve outperformed performance in reducing delay and balancing loads on edge servers than the other four baseline schemes.
6G网络中icn辅助移动边缘计算的两阶段卸载优化
本文研究了6G网络中移动边缘计算的qos感知计算卸载问题。为了最大限度地减少端到端延迟,我们利用信息中心网络(ICN)来确保资源受限的移动用户以分布式方式卸载计算敏感的任务。然后,提出了一种基于多智能体强化学习(MARL)算法与优化嵌入卸载比率相结合的两阶段方法来增强服务器选择以实现负载均衡。数值结果表明,在车间规模场景下,该方法在减少延迟和平衡边缘服务器负载方面的性能优于其他四种基准方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信