Recurrent DQN for radio fingerprinting with constrained measurements collection

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Nicola Novello, Andrea M. Tonello
{"title":"Recurrent DQN for radio fingerprinting with constrained measurements collection","authors":"Nicola Novello,&nbsp;Andrea M. Tonello","doi":"10.1016/j.icte.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we address the problem of fingerprinting-based radio localization with a particular focus on the measurements collection part. We consider the crucial circumstance where the operator that builds the fingerprinting map by collecting measurements can only travel a limited distance. We propose an iterative formulation that increases the accuracy of the position prediction task by using a recurrent deep reinforcement learning algorithm. Numerical results on a real dataset show the effectiveness of the proposed method, and the comparison with other measurement collection strategies corroborates its value.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 1","pages":"Pages 13-18"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524000882","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we address the problem of fingerprinting-based radio localization with a particular focus on the measurements collection part. We consider the crucial circumstance where the operator that builds the fingerprinting map by collecting measurements can only travel a limited distance. We propose an iterative formulation that increases the accuracy of the position prediction task by using a recurrent deep reinforcement learning algorithm. Numerical results on a real dataset show the effectiveness of the proposed method, and the comparison with other measurement collection strategies corroborates its value.
具有约束测量集的无线电指纹识别的循环DQN
在本文中,我们解决了基于指纹的无线电定位问题,并特别关注测量收集部分。我们考虑了通过收集测量值来构建指纹图谱的操作员只能行进有限距离的关键情况。我们提出了一个迭代公式,通过使用循环深度强化学习算法来提高位置预测任务的准确性。在实际数据集上的数值结果表明了该方法的有效性,并与其他测量采集策略进行了比较,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信