Deep learning-driven methods for network-based intrusion detection systems: A systematic review

IF 4.2 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ramya Chinnasamy , Malliga Subramanian , Sathishkumar Veerappampalayam Easwaramoorthy , Jaehyuk Cho
{"title":"Deep learning-driven methods for network-based intrusion detection systems: A systematic review","authors":"Ramya Chinnasamy ,&nbsp;Malliga Subramanian ,&nbsp;Sathishkumar Veerappampalayam Easwaramoorthy ,&nbsp;Jaehyuk Cho","doi":"10.1016/j.icte.2025.01.005","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a systematic review of deep learning (DL) techniques for Network-based Intrusion Detection Systems (NIDS) based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses: (PRISMA2020) guidelines. It explores recent advancements in data preparation, DL architectures, and performance evaluation metrics for NIDS. The review provides insights into various datasets and tools used in the field, highlighting the effectiveness of DL in improving NIDS performance. Additionally, it discusses the applications of NIDS across different industries and identifies emerging research trends, offering a comprehensive resource for researchers and practitioners in cybersecurity.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 1","pages":"Pages 181-215"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959525000050","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a systematic review of deep learning (DL) techniques for Network-based Intrusion Detection Systems (NIDS) based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses: (PRISMA2020) guidelines. It explores recent advancements in data preparation, DL architectures, and performance evaluation metrics for NIDS. The review provides insights into various datasets and tools used in the field, highlighting the effectiveness of DL in improving NIDS performance. Additionally, it discusses the applications of NIDS across different industries and identifies emerging research trends, offering a comprehensive resource for researchers and practitioners in cybersecurity.
基于网络的入侵检测系统的深度学习驱动方法:系统综述
本文基于系统评论和元分析(PRISMA2020)指南的首选报告项,对基于网络的入侵检测系统(NIDS)的深度学习(DL)技术进行了系统综述。它探讨了NIDS在数据准备、DL架构和性能评估指标方面的最新进展。该综述提供了对该领域使用的各种数据集和工具的见解,强调了DL在提高NIDS性能方面的有效性。此外,它还讨论了NIDS在不同行业的应用,并确定了新兴的研究趋势,为网络安全研究人员和从业者提供了全面的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信