Robust application of a chemometric model based on the relationships between 10 volatile compounds and sensory attributes to support the panel test in virgin olive oil quality classification in olive oil companies

IF 4 2区 农林科学 Q2 CHEMISTRY, APPLIED
Lorenzo Cecchi , Marzia Migliorini , Irene Digiglio , Tommaso Ugolini , Serena Trapani , Bruno Zanoni , Nadia Mulinacci , Fabrizio Melani
{"title":"Robust application of a chemometric model based on the relationships between 10 volatile compounds and sensory attributes to support the panel test in virgin olive oil quality classification in olive oil companies","authors":"Lorenzo Cecchi ,&nbsp;Marzia Migliorini ,&nbsp;Irene Digiglio ,&nbsp;Tommaso Ugolini ,&nbsp;Serena Trapani ,&nbsp;Bruno Zanoni ,&nbsp;Nadia Mulinacci ,&nbsp;Fabrizio Melani","doi":"10.1016/j.jfca.2025.107362","DOIUrl":null,"url":null,"abstract":"<div><div>Several approaches have been proposed to support the panel test in virgin olive oil classification, but none of them is currently applied in olive oil companies. Aim of this study was the robust application of a chemometric model in a big olive oil company. The application on 244 samples of the PCA-LDA model developed in 2019, based on volatile profile by HS-SPME-GC-MS, gave unsatisfactory results, pointing out critical issues relating to the training-set, variable selection and validation. Therefore, a new <em>t-test-FwS-LDA</em> model was developed; it was based on a very wide dataset (approx. 1800 samples from 6 different production years) and on an algorithm for a stepwise selection of variables. The crucial role of the production year has been proven and included in the model. Ten volatile molecules were thus selected coming from both the lipoxygenase pathway and several virgin olive oil sensory defects. The new model was two-fold validated with 53 and 273 samples coming from production years belonging and not belonging to the training-set, respectively, with very satisfactory results (&gt;90 % and 80 % correct classification, respectively). Finally, the study indicated that for routinary application of the model, year-by-year updating of training-set and variable selection is required.</div></div>","PeriodicalId":15867,"journal":{"name":"Journal of Food Composition and Analysis","volume":"141 ","pages":"Article 107362"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Composition and Analysis","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889157525001760","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Several approaches have been proposed to support the panel test in virgin olive oil classification, but none of them is currently applied in olive oil companies. Aim of this study was the robust application of a chemometric model in a big olive oil company. The application on 244 samples of the PCA-LDA model developed in 2019, based on volatile profile by HS-SPME-GC-MS, gave unsatisfactory results, pointing out critical issues relating to the training-set, variable selection and validation. Therefore, a new t-test-FwS-LDA model was developed; it was based on a very wide dataset (approx. 1800 samples from 6 different production years) and on an algorithm for a stepwise selection of variables. The crucial role of the production year has been proven and included in the model. Ten volatile molecules were thus selected coming from both the lipoxygenase pathway and several virgin olive oil sensory defects. The new model was two-fold validated with 53 and 273 samples coming from production years belonging and not belonging to the training-set, respectively, with very satisfactory results (>90 % and 80 % correct classification, respectively). Finally, the study indicated that for routinary application of the model, year-by-year updating of training-set and variable selection is required.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Food Composition and Analysis
Journal of Food Composition and Analysis 工程技术-食品科技
CiteScore
6.20
自引率
11.60%
发文量
601
审稿时长
53 days
期刊介绍: The Journal of Food Composition and Analysis publishes manuscripts on scientific aspects of data on the chemical composition of human foods, with particular emphasis on actual data on composition of foods; analytical methods; studies on the manipulation, storage, distribution and use of food composition data; and studies on the statistics, use and distribution of such data and data systems. The Journal''s basis is nutrient composition, with increasing emphasis on bioactive non-nutrient and anti-nutrient components. Papers must provide sufficient description of the food samples, analytical methods, quality control procedures and statistical treatments of the data to permit the end users of the food composition data to evaluate the appropriateness of such data in their projects. The Journal does not publish papers on: microbiological compounds; sensory quality; aromatics/volatiles in food and wine; essential oils; organoleptic characteristics of food; physical properties; or clinical papers and pharmacology-related papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信