Personalizing Vision-Language Models With Hybrid Prompts for Zero-Shot Anomaly Detection

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Yunkang Cao;Xiaohao Xu;Yuqi Cheng;Chen Sun;Zongwei Du;Liang Gao;Weiming Shen
{"title":"Personalizing Vision-Language Models With Hybrid Prompts for Zero-Shot Anomaly Detection","authors":"Yunkang Cao;Xiaohao Xu;Yuqi Cheng;Chen Sun;Zongwei Du;Liang Gao;Weiming Shen","doi":"10.1109/TCYB.2025.3536165","DOIUrl":null,"url":null,"abstract":"Zero-shot anomaly detection (ZSAD) aims to develop a foundational model capable of detecting anomalies across arbitrary categories without relying on reference images. However, since “abnormality” is inherently defined in relation to “normality” within specific categories, detecting anomalies without reference images describing the corresponding normal context remains a significant challenge. As an alternative to reference images, this study explores the use of widely available product standards to characterize normal contexts and potential abnormal states. Specifically, this study introduces AnomalyVLM, which leverages generalized pretrained vision-language models (VLMs) to interpret these standards and detect anomalies. Given the current limitations of VLMs in comprehending complex textual information, AnomalyVLM generates hybrid prompts—comprising prompts for abnormal regions, symbolic rules, and region numbers—from the standards to facilitate more effective understanding. These hybrid prompts are incorporated into various stages of the anomaly detection process within the selected VLMs, including an anomaly region generator and an anomaly region refiner. By utilizing hybrid prompts, VLMs are personalized as anomaly detectors for specific categories, offering users flexibility and control in detecting anomalies across novel categories without the need for training data. Experimental results on four public industrial anomaly detection datasets, as well as a practical automotive part inspection task, highlight the superior performance and enhanced generalization capability of AnomalyVLM, especially in texture categories. An online demo of AnomalyVLM is available at <uri>https://github.com/caoyunkang/Segment-Any-Anomaly</uri>.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 4","pages":"1917-1929"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10884560/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Zero-shot anomaly detection (ZSAD) aims to develop a foundational model capable of detecting anomalies across arbitrary categories without relying on reference images. However, since “abnormality” is inherently defined in relation to “normality” within specific categories, detecting anomalies without reference images describing the corresponding normal context remains a significant challenge. As an alternative to reference images, this study explores the use of widely available product standards to characterize normal contexts and potential abnormal states. Specifically, this study introduces AnomalyVLM, which leverages generalized pretrained vision-language models (VLMs) to interpret these standards and detect anomalies. Given the current limitations of VLMs in comprehending complex textual information, AnomalyVLM generates hybrid prompts—comprising prompts for abnormal regions, symbolic rules, and region numbers—from the standards to facilitate more effective understanding. These hybrid prompts are incorporated into various stages of the anomaly detection process within the selected VLMs, including an anomaly region generator and an anomaly region refiner. By utilizing hybrid prompts, VLMs are personalized as anomaly detectors for specific categories, offering users flexibility and control in detecting anomalies across novel categories without the need for training data. Experimental results on four public industrial anomaly detection datasets, as well as a practical automotive part inspection task, highlight the superior performance and enhanced generalization capability of AnomalyVLM, especially in texture categories. An online demo of AnomalyVLM is available at https://github.com/caoyunkang/Segment-Any-Anomaly.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信