Increased functional and directed corticomuscular connectivity after dynamic motor practice but not isometric motor practice.

IF 2.1 3区 医学 Q3 NEUROSCIENCES
August Lomholt Nielsen, Malene Norup, Jonas Rud Bjørndal, Patrick Wiegel, Meaghan Elizabeth Spedden, Jesper Lundbye-Jensen
{"title":"Increased functional and directed corticomuscular connectivity after dynamic motor practice but not isometric motor practice.","authors":"August Lomholt Nielsen, Malene Norup, Jonas Rud Bjørndal, Patrick Wiegel, Meaghan Elizabeth Spedden, Jesper Lundbye-Jensen","doi":"10.1152/jn.00061.2024","DOIUrl":null,"url":null,"abstract":"<p><p>How do differences in the constraints of a practiced motor task affect oscillatory functional connectivity between the motor cortex and muscle? Here, we investigate corticomuscular (CM) and intermuscular (IM) coherence during the hold-phase of a dynamic position control (PC) and isometric force control (FC) task. We also investigate the effects of PC motor practice requiring precise wrist flexions to designated target positions, and effects of FC motor practice involving isometric wrist flexions to designated target force levels or rest in a control group. In forty-six young healthy adults (aged 20-30), full-cap electroencephalography (EEG) and electromyography (EMG) were recorded from the flexor and extensor carpi radialis muscles during the tasks. Beta-band (15-35 Hz) CM and IM coherence were investigated as a task-related marker of oscillatory activity in the corticospinal system. At baseline, higher CM coupling was demonstrated during position control compared to force control. Following PC motor practice, CM beta-band coherence increased (<i>P = 0.038</i>), while it remained unchanged for participants who practiced FC or rested. This pattern was also found for IM coherence. The increased oscillatory synchronization following PC practice was driven by greater descending signaling (<i>P = 0.025</i>). We speculate that the observed differences between position and force control relate to task differences in corticomuscular control-strategy and the influence of different sensory modalities during motor practice. We interpret the results as indicating increased coupling between the motor cortex and the motoneuron pool of the contracting muscle following dynamic motor practice emphasizing requirements for position control in motor learning.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00061.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

How do differences in the constraints of a practiced motor task affect oscillatory functional connectivity between the motor cortex and muscle? Here, we investigate corticomuscular (CM) and intermuscular (IM) coherence during the hold-phase of a dynamic position control (PC) and isometric force control (FC) task. We also investigate the effects of PC motor practice requiring precise wrist flexions to designated target positions, and effects of FC motor practice involving isometric wrist flexions to designated target force levels or rest in a control group. In forty-six young healthy adults (aged 20-30), full-cap electroencephalography (EEG) and electromyography (EMG) were recorded from the flexor and extensor carpi radialis muscles during the tasks. Beta-band (15-35 Hz) CM and IM coherence were investigated as a task-related marker of oscillatory activity in the corticospinal system. At baseline, higher CM coupling was demonstrated during position control compared to force control. Following PC motor practice, CM beta-band coherence increased (P = 0.038), while it remained unchanged for participants who practiced FC or rested. This pattern was also found for IM coherence. The increased oscillatory synchronization following PC practice was driven by greater descending signaling (P = 0.025). We speculate that the observed differences between position and force control relate to task differences in corticomuscular control-strategy and the influence of different sensory modalities during motor practice. We interpret the results as indicating increased coupling between the motor cortex and the motoneuron pool of the contracting muscle following dynamic motor practice emphasizing requirements for position control in motor learning.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of neurophysiology
Journal of neurophysiology 医学-神经科学
CiteScore
4.80
自引率
8.00%
发文量
255
审稿时长
2-3 weeks
期刊介绍: The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信