{"title":"Binary and weighted network analysis and its applications to functional connectivity in subjective memory complaints: A resting-state fMRI approach","authors":"Sobhan Khodadadi Arpanahi, Shahrbanoo Hamidpour, Khatereh Ghasvarian Jahromi","doi":"10.1016/j.arr.2025.102688","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Despite normal cognitive abilities, subjective memory complaints (SMC) are common in older adults and are linked to mild memory impairment. SMC may be a sign of subtle cognitive decline and underlying pathological changes, according to research; however, there is not enough data to support the use of resting-state functional connectivity to identify early changes in the brain network before cognitive symptoms manifest.</div></div><div><h3>Materials and methods</h3><div>In this study, the topological structure and regional connectivity of the brain functional network in SMC individuals were analyzed using graph theoretical analysis in both weighted and binarized network models, alongside healthy controls. Resting-state functional magnetic resonance imaging data was collected from 24 SMCs and 39 cognitively normal people. Analysis of both binary and weighted graph theory was done using the Dosenbach Atlas as a basis based on area under curves (AUCs) for the graph network parameters, which comprised of six node metrics and nine global measures. We then performed group comparisons using statistical analyses based on Network-Based Statistics functional connectomes. Finally, the relationship between global graph measures and cognition was examined using neuropsychological tests such as the Mini-Mental State Examination (MMSE) and the Alzheimer Disease Assessment Scale (ADAS score).</div></div><div><h3>Results</h3><div>The topologic properties of brain functional connectomes at both global and nodal levels were tested. The SMC patients showed increased functional connectivity in clustering coefficient global (P < 0.00001), global efficiency (P < 0.00001), and normalized characteristic path length or Lambda (P < 0.00001), while there was decreased functional connectivity in Modularity (P < 0.04542), characteristic path length (0.00001), and small-worldness or Sigma (P < 0.00001) in binary networks model. In contrast, SMC patients only exhibited decreased functional connectivity in Assortativity identified by weighted networks model. Furthermore, some brain regions located in the default mode network, sensorimotor, occipital, and cingulo-opercular network in SMC patients showed altered nodal centralities. No significant correlation was found between global metrics and MMSE scores in both groups using binary metrics. However, in cognitively normal individuals, negative correlation was observed with weighted metrics in global and local efficiency and Lambda. While In SMC patients, a significant positive correlation was found between ADAS scores and local efficiency in both binary and weighted metrics.</div></div><div><h3>Conclusion</h3><div>The findings suggest that functional impairments in SMC patients might be associated with disruptions in the global and regional topological organization of the brain's functional connectome, offering new and significant insights into the pathophysiological mechanisms underlying SMC.</div></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"106 ","pages":"Article 102688"},"PeriodicalIF":12.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163725000340","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Despite normal cognitive abilities, subjective memory complaints (SMC) are common in older adults and are linked to mild memory impairment. SMC may be a sign of subtle cognitive decline and underlying pathological changes, according to research; however, there is not enough data to support the use of resting-state functional connectivity to identify early changes in the brain network before cognitive symptoms manifest.
Materials and methods
In this study, the topological structure and regional connectivity of the brain functional network in SMC individuals were analyzed using graph theoretical analysis in both weighted and binarized network models, alongside healthy controls. Resting-state functional magnetic resonance imaging data was collected from 24 SMCs and 39 cognitively normal people. Analysis of both binary and weighted graph theory was done using the Dosenbach Atlas as a basis based on area under curves (AUCs) for the graph network parameters, which comprised of six node metrics and nine global measures. We then performed group comparisons using statistical analyses based on Network-Based Statistics functional connectomes. Finally, the relationship between global graph measures and cognition was examined using neuropsychological tests such as the Mini-Mental State Examination (MMSE) and the Alzheimer Disease Assessment Scale (ADAS score).
Results
The topologic properties of brain functional connectomes at both global and nodal levels were tested. The SMC patients showed increased functional connectivity in clustering coefficient global (P < 0.00001), global efficiency (P < 0.00001), and normalized characteristic path length or Lambda (P < 0.00001), while there was decreased functional connectivity in Modularity (P < 0.04542), characteristic path length (0.00001), and small-worldness or Sigma (P < 0.00001) in binary networks model. In contrast, SMC patients only exhibited decreased functional connectivity in Assortativity identified by weighted networks model. Furthermore, some brain regions located in the default mode network, sensorimotor, occipital, and cingulo-opercular network in SMC patients showed altered nodal centralities. No significant correlation was found between global metrics and MMSE scores in both groups using binary metrics. However, in cognitively normal individuals, negative correlation was observed with weighted metrics in global and local efficiency and Lambda. While In SMC patients, a significant positive correlation was found between ADAS scores and local efficiency in both binary and weighted metrics.
Conclusion
The findings suggest that functional impairments in SMC patients might be associated with disruptions in the global and regional topological organization of the brain's functional connectome, offering new and significant insights into the pathophysiological mechanisms underlying SMC.
期刊介绍:
With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends.
ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research.
The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.