Computer-Aided Design of 3D Non-Enzymatic Catalytic Cascade Systems for In Situ Multiplexed mRNA Imaging in Single-Cells.

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Yun Wen, Li-Ping Wang, Jian-Hua Wang, Yong-Liang Yu, Shuai Chen
{"title":"Computer-Aided Design of 3D Non-Enzymatic Catalytic Cascade Systems for In Situ Multiplexed mRNA Imaging in Single-Cells.","authors":"Yun Wen, Li-Ping Wang, Jian-Hua Wang, Yong-Liang Yu, Shuai Chen","doi":"10.1021/acs.analchem.4c06589","DOIUrl":null,"url":null,"abstract":"<p><p>mRNA, a critical biomarker for various diseases and a promising target for cancer therapy, is central to biological and medical research. However, the development of multiplexed approaches for in situ monitoring of mRNA in live cells are limited by their reliance on enzyme-based signal amplification, challenges with in situ signal diffusion, and the complexity of nucleic acid design. In this study, we introduce a nonenzymatic catalytic DNA assembly (NEDA) technique to address these limitations. NEDA facilitates the precise in situ imaging of intracellular mRNA by assembling three free hairpin DNA amplifiers into a low-mobility, three-dimensional DNA spherical structure. This approach also enables the simultaneous detection of four distinct targets via the combination of fluorescent signals, with a detection limit as low as 141.2 pM for target mRNA. To enhance the efficiency of nucleic acid design, we employed computer-aided design (CAD) to rapidly generate feasible sequences for highly multiplexed detection. By integrating various machine learning algorithms, we achieved impressive accuracy of nearly 96.66% in distinguishing multiple cell types and 87.80% in identifying the same cell type under different drug stimulation conditions. Notably, our platform can also identify drug stimuli with similar mechanisms of action, highlighting its potential in drug development. This multiplexed 3D assembly sensing strategy with CAD not only enhances the ability to image nucleic acid sequences in situ simultaneously but also provides a novel platform for efficient molecular diagnostics and personalized therapy.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":" ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06589","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

mRNA, a critical biomarker for various diseases and a promising target for cancer therapy, is central to biological and medical research. However, the development of multiplexed approaches for in situ monitoring of mRNA in live cells are limited by their reliance on enzyme-based signal amplification, challenges with in situ signal diffusion, and the complexity of nucleic acid design. In this study, we introduce a nonenzymatic catalytic DNA assembly (NEDA) technique to address these limitations. NEDA facilitates the precise in situ imaging of intracellular mRNA by assembling three free hairpin DNA amplifiers into a low-mobility, three-dimensional DNA spherical structure. This approach also enables the simultaneous detection of four distinct targets via the combination of fluorescent signals, with a detection limit as low as 141.2 pM for target mRNA. To enhance the efficiency of nucleic acid design, we employed computer-aided design (CAD) to rapidly generate feasible sequences for highly multiplexed detection. By integrating various machine learning algorithms, we achieved impressive accuracy of nearly 96.66% in distinguishing multiple cell types and 87.80% in identifying the same cell type under different drug stimulation conditions. Notably, our platform can also identify drug stimuli with similar mechanisms of action, highlighting its potential in drug development. This multiplexed 3D assembly sensing strategy with CAD not only enhances the ability to image nucleic acid sequences in situ simultaneously but also provides a novel platform for efficient molecular diagnostics and personalized therapy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信