Joint analysis of single-cell RNA sequencing and bulk transcriptome reveals the heterogeneity of the urea cycle of astrocytes in glioblastoma.

IF 5.1 2区 医学 Q1 NEUROSCIENCES
Minfeng Tong, Qi Tu, Lude Wang, Huahui Chen, Xing Wan, Zhijian Xu
{"title":"Joint analysis of single-cell RNA sequencing and bulk transcriptome reveals the heterogeneity of the urea cycle of astrocytes in glioblastoma.","authors":"Minfeng Tong, Qi Tu, Lude Wang, Huahui Chen, Xing Wan, Zhijian Xu","doi":"10.1016/j.nbd.2025.106835","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma (GB) is incurable with a dismal prognosis. Single-cell RNA sequencing (scRNA-seq) is a pivotal tool for studying tumor heterogeneity. The dysregulation of the urea cycle (UC) frequently occurs in tumors, but its characteristics in GB have not been illuminated. This study integrated scRNA-seq UC scores and bulk RNA-seq data to build a GB prognostic model.</p><p><strong>Methods: </strong>Samples from 3 pairs of GB patients were collected for scRNA-seq analysis. GB-mRNA expression data, clinical data, and SNV mutation data were sourced from the Cancer Genome Atlas (TCGA). GB-mRNA expression data and clinical data were downloaded from the Chinese Glioma Genome Atlas (CGGA). GB RNA-seq data and clinical data were obtained from Gene Expression Omnibus (GEO) database. The R package Seurat was applied for scRNA-seq data processing. UMAP and TSNE were used for dimensionality reduction. UCell enrichment method was employed to score each astrocyte. Monocle algorithm was applied for pseudotime trajectory analysis. CellChat R package was applied for cell communication analysis. Cell labeling was performed on the results of the nine subclusters of astrocytes. The GSE138794 dataset was used to validate the results of single-cell classification. For bulk RNA-seq, univariate Cox and LASSO analyses were undertaken to screen prognostic genes, while multivariate Cox regression analysis was applied to set up a prognostic model. The differences between high-risk (HR) and low-risk (LR) groups were studied in terms of immune infiltration, sensitivity to anti-tumor drugs, etc. We verified the effect of the marker gene on the function of GB cells at the cellular level.</p><p><strong>Results: </strong>The analysis of scRNA-seq data yielded 7 core cell types. Further clustering of the largest proportion of astrocytes resulted in 9 subclusters. UC score and pseudotime analysis revealed the heterogeneity and differentiation process among subclusters. Subcluster 8 was annotated as an immature astrocyte (marker: CXCL8), and this cell cluster had a higher UC score. The results were validated in the GSE138794 dataset. Combining UC scores, we performed univariate Cox and LASSO to select prognostic genes on bulk RNA-seq data. A prognostic model based on 5 feature genes (RGS4, CTSB, SERPINE2, ID1, and CALD1) was established through multivariate Cox analysis. In addition, patients in the HR group had higher immune infiltration and immune function. Final cell experiments demonstrated that 5 feature genes were highly expressed in GB cells. CALD1 promoted the malignant phenotype of GB cells.</p><p><strong>Conclusion: </strong>We set up a novel prognostic model for predicting the survival of GB patients by integrating bulk RNA-seq and scRNA-seq data. The risk score was closely correlated with immune infiltration and drug sensitivity, pinpointing it as a promising independent prognostic factor.</p>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":" ","pages":"106835"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.nbd.2025.106835","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Glioblastoma (GB) is incurable with a dismal prognosis. Single-cell RNA sequencing (scRNA-seq) is a pivotal tool for studying tumor heterogeneity. The dysregulation of the urea cycle (UC) frequently occurs in tumors, but its characteristics in GB have not been illuminated. This study integrated scRNA-seq UC scores and bulk RNA-seq data to build a GB prognostic model.

Methods: Samples from 3 pairs of GB patients were collected for scRNA-seq analysis. GB-mRNA expression data, clinical data, and SNV mutation data were sourced from the Cancer Genome Atlas (TCGA). GB-mRNA expression data and clinical data were downloaded from the Chinese Glioma Genome Atlas (CGGA). GB RNA-seq data and clinical data were obtained from Gene Expression Omnibus (GEO) database. The R package Seurat was applied for scRNA-seq data processing. UMAP and TSNE were used for dimensionality reduction. UCell enrichment method was employed to score each astrocyte. Monocle algorithm was applied for pseudotime trajectory analysis. CellChat R package was applied for cell communication analysis. Cell labeling was performed on the results of the nine subclusters of astrocytes. The GSE138794 dataset was used to validate the results of single-cell classification. For bulk RNA-seq, univariate Cox and LASSO analyses were undertaken to screen prognostic genes, while multivariate Cox regression analysis was applied to set up a prognostic model. The differences between high-risk (HR) and low-risk (LR) groups were studied in terms of immune infiltration, sensitivity to anti-tumor drugs, etc. We verified the effect of the marker gene on the function of GB cells at the cellular level.

Results: The analysis of scRNA-seq data yielded 7 core cell types. Further clustering of the largest proportion of astrocytes resulted in 9 subclusters. UC score and pseudotime analysis revealed the heterogeneity and differentiation process among subclusters. Subcluster 8 was annotated as an immature astrocyte (marker: CXCL8), and this cell cluster had a higher UC score. The results were validated in the GSE138794 dataset. Combining UC scores, we performed univariate Cox and LASSO to select prognostic genes on bulk RNA-seq data. A prognostic model based on 5 feature genes (RGS4, CTSB, SERPINE2, ID1, and CALD1) was established through multivariate Cox analysis. In addition, patients in the HR group had higher immune infiltration and immune function. Final cell experiments demonstrated that 5 feature genes were highly expressed in GB cells. CALD1 promoted the malignant phenotype of GB cells.

Conclusion: We set up a novel prognostic model for predicting the survival of GB patients by integrating bulk RNA-seq and scRNA-seq data. The risk score was closely correlated with immune infiltration and drug sensitivity, pinpointing it as a promising independent prognostic factor.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurobiology of Disease
Neurobiology of Disease 医学-神经科学
CiteScore
11.20
自引率
3.30%
发文量
270
审稿时长
76 days
期刊介绍: Neurobiology of Disease is a major international journal at the interface between basic and clinical neuroscience. The journal provides a forum for the publication of top quality research papers on: molecular and cellular definitions of disease mechanisms, the neural systems and underpinning behavioral disorders, the genetics of inherited neurological and psychiatric diseases, nervous system aging, and findings relevant to the development of new therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信